Non-Markovian dynamics for bipartite systems

被引:35
作者
Vacchini, Bassano [1 ,2 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Sez Milano, Ist Nazl Fis Nucl, I-20133 Milan, Italy
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevA.78.022112
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the appearance of non-Markovian effects in the dynamics of a bipartite system coupled to a reservoir, which can be described within a class of non-Markovian equations given by a generalized Lindblad structure. A master equation is derived, which we term the quantum Bloch-Boltzmann equation, describing both motional and internal states of a test particle in a quantum framework. When due to the preparation of the system or to decoherence effects one of the two degrees of freedom is amenable to a classical treatment and not resolved in the final measurement, though relevant for the interaction with the reservoir, non-Markovian behaviors such as stretched exponential or power law decay of coherences can occur.
引用
收藏
页数:12
相关论文
共 45 条
  • [1] Fractal-time approach to dispersive transport in single-species reaction-diffusion
    Alemany, PA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19): : 6587 - 6599
  • [2] Completely positive Bloch-Boltzmann equations
    Alicki, R
    Kryszewski, S
    [J]. PHYSICAL REVIEW A, 2003, 68 (01): : 9
  • [3] Alicki R., 2001, QUANTUM DYNAMICAL SY
  • [4] [Anonymous], 1998, LECT NOTES PHYS
  • [5] BLANCHARD P, 1995, ANN PHYS-LEIPZIG, V4, P583, DOI 10.1002/andp.19955070605
  • [6] Breuer H-P, 2007, THEORY OPEN QUANTUM, DOI DOI 10.1093/ACPROF:OSO/9780199213900.001.0001
  • [7] Non-Markovian generalization of the Lindblad theory of open quantum systems
    Breuer, Heinz-Peter
    [J]. PHYSICAL REVIEW A, 2007, 75 (02):
  • [8] Three-dimensional Monte Carlo simulations of the quantum linear Boltzmann equation
    Breuer, Heinz-Peter
    Vacchini, Bassano
    [J]. PHYSICAL REVIEW E, 2007, 76 (03):
  • [9] Non-Markovian quantum dynamics: Correlated projection superoperators and Hilbert space averaging
    Breuer, HP
    Gemmer, J
    Michel, M
    [J]. PHYSICAL REVIEW E, 2006, 73 (01):
  • [10] BREUER HP, ARXIV07070172