Wind Speed Forecasting Using Improved Random Vector Functional Link Network

被引:0
作者
Nhabangue, Moreira F. C. [1 ]
Pillai, G. N. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect Engn, Roorkee, Uttar Pradesh, India
来源
2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI) | 2018年
关键词
Random Vector Functional Link; Chebyshev Polynomials; Empirical Mode Decomposition; Wind speed prediction; EMPIRICAL MODE DECOMPOSITION; EXTREME LEARNING-MACHINE; REGRESSION; PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved Random Vector Functional Link Network (RVFL) for better performance in regression problems. The model applies the Chebyshev expansion to transform the direct links of the RVFL providing better mapping of nonlinear functions when compared with RVFL model. Two wind speed datasets are used for performance comparison with other models. The application of Chebyshev expansion in the RVFL enables the RVFL to have a lower number of activation nodes reducing its size with better performance. The models are also tested with their ensembled version by applying the empirical mode decomposition (EMD).
引用
收藏
页码:1744 / 1750
页数:7
相关论文
共 50 条
  • [11] Modes decomposition method in fusion with robust random vector functional link network for crude oil price forecasting
    Bisoi, Ranjeeta
    Dash, P. K.
    Mishra, S. P.
    APPLIED SOFT COMPUTING, 2019, 80 : 475 - 493
  • [12] Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods
    Adnan, Rana Muhammad
    Mostafa, Reham R.
    Islam, Abu Reza Md. Towfiqul
    Gorgij, Alireza Docheshmeh
    Kuriqi, Alban
    Kisi, Ozgur
    WATER, 2021, 13 (23)
  • [13] Random vector functional link neural network based ensemble deep learning for short-term load forecasting
    Gao, Ruobin
    Du, Liang
    Suganthan, Ponnuthurai Nagaratnam
    Zhou, Qin
    Yuen, Kum Fai
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [14] Ensemble Deep Random Vector Functional Link Neural Network for Regression
    Hu, Minghui
    Chion, Jet Herng
    Suganthan, Ponnuthurai Nagaratnam
    Katuwal, Rakesh Kumar
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 2604 - 2615
  • [15] An Improved Wavelet Neural Network Method for Wind Speed Forecasting
    Yao, Chuanan
    Yu, Yongchang
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (12) : 2860 - 2865
  • [16] Random vector functional link network: Recent developments, applications, and future directions
    Malik, A. K.
    Gao, Ruobin
    Ganaie, M. A.
    Tanveer, M.
    Suganthan, Ponnuthurai Nagaratnam
    APPLIED SOFT COMPUTING, 2023, 143
  • [17] Parsimonious random vector functional link network for data streams
    Pratama, Mahardhika
    Angelov, Plamen P.
    Lughofer, Edwin
    Er, Meng Joo
    INFORMATION SCIENCES, 2018, 430 : 519 - 537
  • [18] Co-Trained Random Vector Functional Link Network
    Ganaie, M. A.
    Tanveer, M.
    Suganthan, P. N.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [19] An improved combination approach based on Adaboost algorithm for wind speed time series forecasting
    Xiao, Ling
    Dong, Yunxuan
    Dong, Yao
    ENERGY CONVERSION AND MANAGEMENT, 2018, 160 : 273 - 288
  • [20] Wind speed and wind direction forecasting using echo state network with nonlinear functions
    Chitsazan, Mohammad Amin
    Fadali, M. Sami
    Trzynadlowski, Andrzej M.
    RENEWABLE ENERGY, 2019, 131 : 879 - 889