Wind Speed Forecasting Using Improved Random Vector Functional Link Network

被引:0
作者
Nhabangue, Moreira F. C. [1 ]
Pillai, G. N. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect Engn, Roorkee, Uttar Pradesh, India
来源
2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI) | 2018年
关键词
Random Vector Functional Link; Chebyshev Polynomials; Empirical Mode Decomposition; Wind speed prediction; EMPIRICAL MODE DECOMPOSITION; EXTREME LEARNING-MACHINE; REGRESSION; PREDICTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved Random Vector Functional Link Network (RVFL) for better performance in regression problems. The model applies the Chebyshev expansion to transform the direct links of the RVFL providing better mapping of nonlinear functions when compared with RVFL model. Two wind speed datasets are used for performance comparison with other models. The application of Chebyshev expansion in the RVFL enables the RVFL to have a lower number of activation nodes reducing its size with better performance. The models are also tested with their ensembled version by applying the empirical mode decomposition (EMD).
引用
收藏
页码:1744 / 1750
页数:7
相关论文
共 50 条
  • [1] Random vector functional link network for short-term electricity load demand forecasting
    Ren, Ye
    Suganthan, P. N.
    Srikanth, N.
    Amaratunga, Gehan
    INFORMATION SCIENCES, 2016, 367 : 1078 - 1093
  • [2] Graph ensemble deep random vector functional link network for traffic forecasting
    Du, Liang
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Wang, David Z. W.
    APPLIED SOFT COMPUTING, 2022, 131
  • [3] Ship order book forecasting by an ensemble deep parsimonious random vector functional link network
    Cheng, Ruke
    Gao, Ruobin
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [4] Wind Speed Forecasting Using Empirical Mode Decomposition and Regularized ELANFIS
    Pillai, G. N.
    Shihabudheen, K., V
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1796 - 1802
  • [5] Ensemble Incremental Random Vector Functional Link Network for Short-term Crude Oil Price Forecasting
    Qiu, Xueheng
    Suganthan, P. N.
    Amaratunga, Gehan A. J.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1758 - 1763
  • [6] Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting
    Qiu, Xueheng
    Suganthan, Ponnuthurai Nagaratnam
    Amaratunga, Gehan A. J.
    KNOWLEDGE-BASED SYSTEMS, 2018, 145 : 182 - 196
  • [7] An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on Elman Neural Network
    Yu, Chuanjin
    Li, Yongle
    Zhang, Mingjin
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 895 - 904
  • [8] Short-term forecasting of electricity price using ensemble deep kernel based random vector functional link network
    Perla, Someswari
    Bisoi, Ranjeeta
    Dash, P. K.
    Rout, A. K.
    APPLIED SOFT COMPUTING, 2025, 174
  • [9] Walk-forward empirical wavelet random vector functional link for time series forecasting
    Gao, Ruobin
    Du, Liang
    Yuen, Kum Fai
    Suganthan, Ponnuthurai Nagaratnam
    APPLIED SOFT COMPUTING, 2021, 108
  • [10] Online learning using deep random vector functional link network
    Shiva, Sreenivasan
    Hu, Minghui
    Suganthan, Ponnuthurai Nagaratnam
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125