Technical vision system for analysing the mechanical characteristics of bulk materials
被引:5
作者:
Boikov, A. V.
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, RussiaSt Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, Russia
Boikov, A. V.
[1
]
Payor, V. A.
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, RussiaSt Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, Russia
Payor, V. A.
[1
]
Savelev, R. V.
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, RussiaSt Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, Russia
Savelev, R. V.
[1
]
机构:
[1] St Petersburg Min Univ, 21 Line VO, St Petersburg 199106 2, Russia
来源:
XI INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE - APPLIED MECHANICS AND DYNAMICS SYSTEMS
|
2018年
/
944卷
关键词:
D O I:
10.1088/1742-6596/944/1/012021
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
In this article actual topics concerned with mechanical properties of bulk materials, usage of computer vision and artificial neural networks in this research are discussed. The main principles of the system for analysis of bulk materials mechanical characteristics are described. Bulk material outflow behaviour with predefined parameters (particles shapes and radius, coefficients of friction, etc.) was modelled. The outflow was modelled from the calibrated conical funnel. Obtained dependencies between mechanical characteristics and pile geometrical properties are represented as diagrams and graphs.
引用
收藏
页数:6
相关论文
共 2 条
[1]
Hu G, 2010, INT C MECH AUT CONTR, P923, DOI [10.1109/MACE.2010.5536021, DOI 10.1109/MACE.2010.5536021]