The transcriptome dynamics of single cells during the cell cycle

被引:33
作者
Schwabe, Daniel [1 ]
Formichetti, Sara [2 ,3 ,4 ]
Junker, Jan Philipp [5 ]
Falcke, Martin [1 ,6 ]
Rajewsky, Nikolaus [2 ]
机构
[1] Helmholtz Assoc, Math Cell Physiol, Max Delbruck Ctr Mol Med, Berlin, Germany
[2] Helmholtz Assoc, Berlin Inst Med Syst Biol, Max Delbruck Ctr Mol Med, Syst Biol Gene Regulatory Elements, Berlin, Germany
[3] European Mol Biol Lab, Epigenet & Neurobiol Unit, Monterotondo, Italy
[4] Collaborat Joint PhD Degree European Mol Biol Lab, Fac Biosci, Heidelberg, Germany
[5] Helmholtz Assoc, Quantitat Dev Biol, Berlin Inst Med Syst Biol, Max Delbruck Ctr Mol Med, Berlin, Germany
[6] Humboldt Univ, Dept Phys, Berlin, Germany
关键词
cell biology; cell cycle; dynamical systems; single‐ cell RNA sequencing; systems biology; PROGRESSION; EXPRESSION; GENES; REVEALS; NETWORK; MODEL;
D O I
10.15252/msb.20209946
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cell cycle is among the most basic phenomena in biology. Despite advances in single-cell analysis, dynamics and topology of the cell cycle in high-dimensional gene expression space remain largely unknown. We developed a linear analysis of transcriptome data which reveals that cells move along a planar circular trajectory in transcriptome space during the cycle. Non-cycling gene expression adds a third dimension causing helical motion on a cylinder. We find in immortalized cell lines that cell cycle transcriptome dynamics occur largely independently from other cellular processes. We offer a simple method ("Revelio") to order unsynchronized cells in time. Precise removal of cell cycle effects from the data becomes a straightforward operation. The shape of the trajectory implies that each gene is upregulated only once during the cycle, and only two dynamic components represented by groups of genes drive transcriptome dynamics. It indicates that the cell cycle has evolved to minimize changes of transcriptional activity and the related regulatory effort. This design principle of the cell cycle may be of relevance to many other cellular differentiation processes.
引用
收藏
页数:20
相关论文
共 48 条
[1]  
Alberts B, 2015, MOLECULAR BIOLOGY OF THE CELL, SIXTH EDITION, P1
[2]   Cell fixation and preservation for droplet-based single-cell transcriptomics [J].
Alles, Jonathan ;
Karaiskos, Nikos ;
Praktiknjo, Samantha D. ;
Grosswendt, Stefanie ;
Wahle, Philipp ;
Ruffault, Pierre-Louis ;
Ayoub, Salah ;
Schreyer, Luisa ;
Boltengagen, Anastasiya ;
Birchmeier, Carmen ;
Zinzen, Robert ;
Kocks, Christine ;
Rajewsky, Nikolaus .
BMC BIOLOGY, 2017, 15
[3]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[4]  
[Anonymous], 1983, Synergetics: An Introduction
[5]  
Arnold V. I., 1992, Ordinary differential equations
[6]   Identifying and removing the cellcycle effect from single-cell RNA-Sequencing data [J].
Barron, Martin ;
Li, Jun .
SCIENTIFIC REPORTS, 2016, 6
[7]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[8]   Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero [J].
Brandeis, M ;
Rosewell, I ;
Carrington, M ;
Crompton, T ;
Jacobs, MA ;
Kirk, J ;
Gannon, J ;
Hunt, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4344-4349
[9]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[10]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+