Rational points on singular intersections of quadrics

被引:10
作者
Browning, T. D. [1 ]
Munshi, R. [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
基金
英国工程与自然科学研究理事会;
关键词
Hardy-Littlewood circle method; pairs of quadratic forms; rational points; CHATELET SURFACES; CUBIC FORMS; VARIETIES;
D O I
10.1112/S0010437X13007185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an intersection of two quadrics X subset of Pm-1, with m >= 9, the quantitative arithmetic of the set X (Q) is investigated under the assumption that the singular locus of X consists of a pair of conjugate singular points defined over Q (i).
引用
收藏
页码:1457 / 1494
页数:38
相关论文
共 22 条
[3]   Counting rational points on algebraic varieties [J].
Browning, TD ;
Heath-Brown, DR ;
Salberger, P .
DUKE MATHEMATICAL JOURNAL, 2006, 132 (03) :545-578
[4]  
COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V373, P37
[5]  
COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V374, P72
[6]  
COOK RJ, 1971, J LOND MATH SOC, V4, P319
[8]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273, DOI 10.1007/BF02684373
[9]  
Dem'yanov V. B., 1956, INVENT MATH, V20, P307
[10]  
Demyanov V. B., 1956, Izv. Akad. Nauk SSSR Ser. Mat., V20, P307