Coulomb blockade oscillations as a noninvasive probe of screening

被引:0
作者
Nemutudi, R.
Liang, C. -T.
Murphy, M. J.
Farrer, I.
Smith, C. G.
Ritchie, D. A.
Pepper, M.
Jones, G. A. C.
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] FAURE, Mat Res Grp, iThemba LABS, ZA-7131 Faure, South Africa
[3] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
关键词
Coulomb blockade; noninvasive; screening; quantum dot;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noninvasive measurement techniques utilize the fact that the local conditions in an electrical circuit can affect a nearby, but electrically isolated circuit. Such a technique can be used to measure the screening ability of an electron system. In this work, we study non-invasively the screening characteristics of a one-dimensional (1D) channel in close lateral proximity to a quantum dot that forms a separate and electrically isolated circuit. We use a one-dimensional (1D) channel to screen and in-plane electric field between the gate and the lateral quantum dot. The Coulomb blockade oscillations we observe through the quantum dot circuit and the corresponding variation in their periodicity at different gate voltage regions are a signature of the screening characteristics of a 1D channel both at zero magnetic field and in the quantum Hall region. The screening ability of the 1D channel is found to be approximately two orders of magnitude smaller than that of an ungated GaAs two-dimensional electron system.
引用
收藏
页码:1312 / 1315
页数:4
相关论文
共 50 条
[41]   Noninvasive measurement and screening techniques for spinal deformities [J].
Harrop, James S. ;
Birknes, John ;
Shaffrey, Christopher I. .
NEUROSURGERY, 2008, 63 (03) :A46-A53
[42]   Analysis and Simulation of Coulomb Blockade and Coulomb Diamonds in Fullerene Single Electron Transistors [J].
Hosseini, Vahideh Khadem ;
Ahmadi, Mohammad Taghi ;
Afrang, Saeid ;
Ismail, Razali .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (01) :138-143
[43]   Coulomb blockade and Coulomb staircases in CoBi nanoislands on SrTiO3 (001) [J].
Xia, Yumin ;
Cai, Desheng ;
Gao, Jiaqing ;
Li, Pengju ;
Xie, Kun ;
Liu, Yuzhou ;
Gu, Yitong ;
Yu, Gan ;
Cui, Ping ;
Qin, Shengyong .
NANOTECHNOLOGY, 2024, 35 (29)
[44]   Peak position control of Coulomb blockade oscillations in silicon single-electron transistors with floating gate operating at room temperature [J].
Tanahashi, Yuma ;
Suzuki, Ryota ;
Saraya, Takuya ;
Hiramoto, Toshiro .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (04)
[45]   New regime of the Coulomb blockade in quantum dots [J].
Mcardle, G. ;
Davies, R. ;
Lerner, I. V. ;
Yurkevich, I. V. .
LOW TEMPERATURE PHYSICS, 2024, 50 (12) :1083-1089
[46]   Coupling of superconductivity and Coulomb blockade in Sn nanoparticles [J].
Qin, Jin ;
Zhao, Chenxiao ;
Xia, Bing ;
Wang, Zerui ;
Liu, Yu ;
Guan, Dandan ;
Wang, Shiyong ;
Li, Yaoyi ;
Zheng, Hao ;
Liu, Canhua ;
Jia, Jinfeng .
NANOTECHNOLOGY, 2020, 31 (30)
[47]   Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle [J].
Kim, Chulki ;
Prada, Marta ;
Blick, Robert H. .
ACS NANO, 2012, 6 (01) :651-655
[48]   The problem of Macroscopic Charge Quantization in the Coulomb Blockade [J].
Burmistrov, I. S. ;
Pruisken, A. M. M. .
ADVANCES IN THEORETICAL PHYSICS, 2009, 1134 :101-+
[49]   Shot noise and Coulomb blockade of Andreev reflection [J].
Galaktionov, Artem V. ;
Zaikin, Andrei D. .
PHYSICAL REVIEW B, 2009, 80 (17)
[50]   Coulomb blockade and charge transfer in InSb micrograins [J].
E. G. Glukhovskoi ;
N. D. Zhukov .
Technical Physics Letters, 2015, 41 :687-690