Coulomb blockade oscillations as a noninvasive probe of screening

被引:0
作者
Nemutudi, R.
Liang, C. -T.
Murphy, M. J.
Farrer, I.
Smith, C. G.
Ritchie, D. A.
Pepper, M.
Jones, G. A. C.
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] FAURE, Mat Res Grp, iThemba LABS, ZA-7131 Faure, South Africa
[3] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
关键词
Coulomb blockade; noninvasive; screening; quantum dot;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noninvasive measurement techniques utilize the fact that the local conditions in an electrical circuit can affect a nearby, but electrically isolated circuit. Such a technique can be used to measure the screening ability of an electron system. In this work, we study non-invasively the screening characteristics of a one-dimensional (1D) channel in close lateral proximity to a quantum dot that forms a separate and electrically isolated circuit. We use a one-dimensional (1D) channel to screen and in-plane electric field between the gate and the lateral quantum dot. The Coulomb blockade oscillations we observe through the quantum dot circuit and the corresponding variation in their periodicity at different gate voltage regions are a signature of the screening characteristics of a 1D channel both at zero magnetic field and in the quantum Hall region. The screening ability of the 1D channel is found to be approximately two orders of magnitude smaller than that of an ungated GaAs two-dimensional electron system.
引用
收藏
页码:1312 / 1315
页数:4
相关论文
共 50 条
[21]   Transition from the Kondo effect to a Coulomb blockade in an electron shuttle [J].
张荣 ;
楚卫东 ;
段素青 ;
杨宁 .
Chinese Physics B, 2013, (11) :522-527
[22]   Multiparticle states and Coulomb blockade in InAs/GaAs quantum dots [J].
Lelong, P ;
Heller, O ;
Bastard, G .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 1998, 2 (1-4) :678-681
[23]   Coulomb Blockade in Silicon Devices: Electronic Structure of Quantum Dots [J].
See, J. ;
Dollfus, P. ;
Galdin-Retailleau, S. ;
Hesto, P. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) :449-453
[24]   Quantum Coulomb blockade in gate-controlled quantum dots [J].
Bednarek, S ;
Szafran, B ;
Adamowski, J .
MICROELECTRONIC ENGINEERING, 2000, 51-2 :99-109
[25]   Coulomb Blockade in Silicon Devices: Electronic Structure of Quantum Dots [J].
J. Sée ;
P. Dollfus ;
S. Galdin-Retailleau ;
P. Hesto .
Journal of Computational Electronics, 2003, 2 :449-453
[26]   Transition from the Kondo effect to a Coulomb blockade in an electron shuttle [J].
Zhang Rong ;
Chu Wei-Dong ;
Duan Su-Qing ;
Yang Ning .
CHINESE PHYSICS B, 2013, 22 (11)
[27]   Coulomb blockade in arrays of quantum dots [J].
Hirasawa, M ;
Katsumoto, S ;
Endo, A ;
Iye, Y .
PHYSICA B-CONDENSED MATTER, 1998, 249 :252-256
[28]   Coulomb blockade in anodised titanium nanostructures [J].
Johannson, J ;
Schöllmann, V ;
Andersson, K ;
Haviland, DB .
PHYSICA B, 2000, 284 :1796-1797
[29]   Transport and Coulomb blockade in carbon nanotubes [J].
Komnik, A ;
Göppert, G ;
Egger, R ;
Grabert, H .
PHYSICA B-CONDENSED MATTER, 2000, 284 :1748-1749
[30]   Design optimization of Coulomb blockade devices [J].
Müller, HO ;
Williams, DA ;
Mizuta, H .
VLSI DESIGN, 2001, 13 (1-4) :193-198