Real-time optimization of multi-cell industrial evaporative cooling towers using machine learning and particle swarm optimization

被引:22
作者
Blackburn, Landen D. [1 ]
Tuttle, Jacob F. [1 ]
Powell, Kody M. [1 ,2 ]
机构
[1] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
关键词
Real-time optimization; Cooling tower; Machine learning; Neural network; Supply-side management; Particle swarm optimization; DEMAND-SIDE MANAGEMENT; FIRED POWER-PLANTS; PERFORMANCE PREDICTION; ENERGY; FLEXIBILITY; INTEGRATION; EMISSIONS; SYSTEM;
D O I
10.1016/j.jclepro.2020.122175
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Existing electrical generating stations must operate with greater flexibility due to increasing renewable energy penetration on the electrical grid, and many coal-fired power stations have transitioned away from baseload operation to load-following operation to aid in grid stability. In cases where multiple independently controlled cooling tower cells are used in parallel for the cooling purposes of such stations, there is an opportunity to increase plant efficiency through data-driven optimization across their full load ranges. This work presents a novel application of real-time optimization using machine learning and particle swarm optimization on a multi-cell induced-draft cooling tower servicing a coal-fired power station under variable load. This is the first work to demonstrate simultaneous optimization of a multi-cell cooling tower, in addition to using machine learning for closed-loop control on a cooling tower. A novel control configuration is presented that ensures original control logic is not adversely affected and that the overall plant process is not disrupted using only existing hardware and operational data. To verify this methodology, the 12 independent cooling tower cells are simulated in parallel using historic operating data to demonstrate the effectiveness of real-time optimization compared to current practice. An artificial neural network is trained to predict overall cooling tower power consumption using only operational data and ambient conditions with an R-2 value of greater than 0.96. The real-time optimization using particle swarm yields 6.7% annual energy usage savings compared to current practices, although the extent of the real-time savings varies greatly with both plant load and environmental conditions. This is particularly significant for a variable load situation because frequent ramping typically results in reduced overall efficiency. This proposed AI-based solution presents an opportunity to improve the overall heat rate of a load-following coal-fired power plant without the need to perform extensive first-principles modeling or add additional hardware to the cooling tower, resulting in more resources conserved and less overall emissions per unit of electricity generated. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Predicting rockburst with database using particle swarm optimization and extreme learning machine
    Xue, Yiguo
    Bai, Chenghao
    Qiu, Daohong
    Kong, Fanmeng
    Li, Zhiqiang
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2020, 98
  • [22] Accelerating Particle Swarm Optimization Algorithms Using Gaussian Process Machine Learning
    Su, Guoshao
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 174 - 177
  • [23] On Demand Bandwidth Reservation for Real-Time Traffic in Cellular IP Network using Particle Swarm Optimization
    Anbar, Mohammad
    Vidyarthi, D. P.
    INTERNATIONAL JOURNAL OF BUSINESS DATA COMMUNICATIONS AND NETWORKING, 2009, 5 (03) : 53 - 66
  • [24] Solving multi objective optimization problems using particle swarm optimization
    Zhang, LB
    Zhou, CG
    Liu, XH
    Ma, ZQ
    Ma, M
    Liang, YC
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2400 - 2405
  • [25] Robust optimization using multi-objective particle swarm optimization
    Ono S.
    Yoshitake Y.
    Nakayama S.
    Artificial Life and Robotics, 2009, 14 (02) : 174 - 177
  • [26] Real-Time Particle Swarm Optimization on FPGA for the Optimal Message-Chain Structure
    Lee, Heoncheol
    Kim, Kipyo
    Kwon, Yongsung
    Hong, Eonpyo
    ELECTRONICS, 2018, 7 (11)
  • [27] LiDAR Real-Time Detection of Tunnel Centerline Based on Particle Swarm Optimization Algorithm
    Wang Yanglang
    Wang Kewei
    Zou Bin
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (03)
  • [28] A New Weight Adjusted Particle Swarm Optimization for Real-Time Multiple Object Tracking
    Liu, Guang
    Chen, Zhenghao
    Yeung, Henry Wing Fung
    Chung, Yuk Ying
    Yeh, Wei-Chang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 643 - 651
  • [29] Extreme Learning Machine and Particle Swarm Optimization for Inflation Forecasting
    Alfiyatin, Adyan Nur
    Rizki, Agung Mustika
    Mahmudy, Wayan Firdaus
    Ananda, Candra Fajri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 473 - 478
  • [30] Machine-part cell formation using a hybrid particle swarm optimization
    Anvari, Mona
    Mehrabad, Mohammad Saidi
    Barzinpour, Farnaz
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 47 (5-8) : 745 - 754