On the formulation of the image reconstruction problem in magnetic particle imaging

被引:69
作者
Gruettner, Mandy [1 ]
Knopp, Tobias [2 ]
Franke, Jochen [1 ,2 ]
Heidenreich, Michael [2 ]
Rahmer, Juergen [3 ]
Halkola, Aleksi [1 ]
Kaethner, Christian [1 ]
Borgert, Joern [3 ]
Buzug, Thorsten M. [1 ]
机构
[1] Med Univ Lubeck, Inst Med Engn, D-23562 Lubeck, Germany
[2] Bruker Biospin MRI, Ettlingen, Germany
[3] Philips Technol GmbH, Forschungslab, Hamburg, Germany
来源
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK | 2013年 / 58卷 / 06期
关键词
image reconstruction magnetic particle imaging; magnetic particle imaging (MPI); super paramagnetic iron oxide; x-space; SIMULATION; RESOLUTION;
D O I
10.1515/bmt-2012-0063
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In magnetic particle imaging (MPI), the spatial distribution of magnetic nanoparticles is determined by applying various static and dynamic magnetic fields. Due to the complex physical behavior of the nanoparticles, it is challenging to determine the MPI system matrix in practice. Since the first publication on MPI in 2005, different methods that rely on measurements or simulations for the determination of the MPI system matrix have been proposed. Some methods restrict the simulation to an idealized model to speed up data reconstruction by exploiting the structure of an idealized MPI system matrix. Recently, a method that processes the measurement data in x-space rather than frequency space has been proposed. In this work, we compare the different approaches for image reconstruction in MPI and show that the x-space and the frequency space reconstruction techniques are equivalent.
引用
收藏
页码:583 / 591
页数:9
相关论文
共 31 条
[1]  
[Anonymous], J PHYS D, DOI DOI 10.1088/0022-3727/42/2/022001
[2]   Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].
Biederer, S. ;
Knopp, T. ;
Sattel, T. F. ;
Luedtke-Buzug, K. ;
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. ;
Buzug, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
[3]  
Chikazumi, 1964, PHYS MAGNETISM
[4]   Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging [J].
Erbe, Marlitt ;
Knopp, Tobias ;
Sattel, Timo F. ;
Biederer, Sven ;
Buzug, Thorsten M. .
MEDICAL PHYSICS, 2011, 38 (09) :5200-5207
[5]   Fast summation based on fast trigonometric transforms at non-equispaced nodes [J].
Fenn, M ;
Potts, D .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) :161-169
[6]  
Finas D, 2010, MAGNETIC NANOPARTICLES: PARTICLE SCIENCE, IMAGING TECHNOLOGY, AND CLINICAL APPLICATIONS, P205, DOI 10.1142/9789814324687_0029
[7]   Experimental results on fast 2D-encoded magnetic particle imaging [J].
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (06) :N81-N84
[8]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[9]  
Gleich B., 2010, Proceedings of the International Society for Magnetic Resonance in Medicine, V18, P218
[10]   An x-space magnetic particle imaging scanner [J].
Goodwill, Patrick W. ;
Lu, Kuan ;
Zheng, Bo ;
Conolly, Steven M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03)