Optimal Betti numbers of forest ideals

被引:0
作者
Goff, Michael [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
MONOMIAL IDEALS; MODULES; RESOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.
引用
收藏
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 2005, Combinatorial Commutative Algebra, volume 227 of Graduate Texts in Mathematics
[2]   UPPER-BOUNDS FOR THE BETTI NUMBERS OF A GIVEN HILBERT FUNCTION [J].
BIGATTI, AM .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (07) :2317-2334
[3]   Betti numbers of Zn-graded modules [J].
Brun, M ;
Römer, T .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) :4589-4599
[4]   BETTI NUMBERS OF MULTIGRADED MODULES [J].
CHARALAMBOUS, H .
JOURNAL OF ALGEBRA, 1991, 137 (02) :491-500
[5]   Specializations of Ferrers ideals [J].
Corso, Alberto ;
Nagel, Uwe .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (03) :425-437
[6]  
Corso A, 2009, T AM MATH SOC, V361, P1371
[7]  
DUVAL A, T AM MATH S IN PRESS
[8]   Restricting linear syzygies: algebra and geometry [J].
Eisenbud, D ;
Green, M ;
Hulek, K ;
Popescu, S .
COMPOSITIO MATHEMATICA, 2005, 141 (06) :1460-1478
[9]   BINOMIAL BEHAVIOR OF BETTI NUMBERS FOR MODULES OF FINITE LENGTH [J].
EVANS, EG ;
GRIFFITH, P .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) :267-276
[10]  
GOFF M, J PURE APPL IN PRESS