On Stable Solutions of Boundary Reaction-Diffusion Equations and Applications to Nonlocal Problems with Neumann Data

被引:0
|
作者
Dipierro, Serena [1 ]
Soave, Nicola [2 ]
Valdinoci, Enrico [1 ,3 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Cesare Saldini 50, I-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, Via Edoardo Bonardi 9, I-20133 Milan, Italy
[3] Univ Melbourne, Sch Math & Stat, 813 Swanston St, Melbourne, Vic 3010, Australia
关键词
Stability; symmetry results; classification of solution; reaction-diffusion equations; nonlocal equations; FRACTIONAL DIFFUSION; NONLINEAR EQUATIONS; LAPLACIAN; INEQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study reaction-diffusion equations in cylinders with possibly nonlinear diffusion and possibly nonlinear Neumann boundary conditions. We provide a geometric Poincare-type inequality and classification results for stable solutions, and we apply them to the study of an associated nonlocal problem. We also establish a counterexample in the corresponding framework for the fractional Laplacian.
引用
收藏
页码:429 / 469
页数:41
相关论文
共 50 条
  • [31] Interface development and local solutions to reaction-diffusion equations
    Abdulla, UG
    King, JR
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (02) : 235 - 260
  • [32] An inverse problem for nonlocal reaction-diffusion equations with time-delay
    Yang, Lin
    Xu, Dinghua
    APPLICABLE ANALYSIS, 2024, 103 (16) : 3067 - 3085
  • [33] Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications
    Wu, Shi-Liang
    Hsu, Cheng-Hsiung
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (05) : 1085 - 1112
  • [34] Stable rotational symmetric schemes for nonlinear reaction-diffusion equations
    Lee, Philku
    Popescu, George, V
    Kim, Seongjai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 : 191 - 203
  • [35] Reaction-diffusion equations with nonlinear boundary conditions in narrow domains
    Freidlin, Mark
    Spiliopoulos, Konstantinos
    ASYMPTOTIC ANALYSIS, 2008, 59 (3-4) : 227 - 249
  • [36] Boundary layer analysis for the stochastic nonlinear reaction-diffusion equations
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 247 - 258
  • [37] Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications
    Pan, Shuxia
    Li, Wan-Tong
    Lin, Guo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (03): : 377 - 392
  • [38] Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions
    Polyanin, A. D.
    Sorokin, V. G.
    VI INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 937
  • [39] On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition
    Guo, Shangjiang
    Li, Shangzhi
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [40] On the existence of patterns in reaction-diffusion problems with Dirichlet boundary conditions
    Sonego, Maicon
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (30)