The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic

被引:16
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Spanning tree; Circulant graph; Laplacian matrix; Chebyshev polynomial; Mahler measure; JACOBIAN GROUP; COMPLEXITY;
D O I
10.1016/j.disc.2018.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a new method to produce explicit formulas for the number tau(n) of spanning trees in the undirected circulant graphs C-n(s(1), s(2), ... , s(k)) and C-2n(s(1), s(2), ... , s(k), n). Also, we prove that in both cases the number of spanning trees can be represented in the form tau(n) = pna(n)(2), where a(n) is an integer sequence and p is a prescribed natural number depending on the parity of n. Finally, we find an asymptotic formula for tau(n) through the Mahler measure of the associated Laurent polynomial L(z) = 2k - Sigma(k)(j=1)(z(sj) + z(-sj)). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1772 / 1781
页数:10
相关论文
共 50 条
  • [41] On the broadcast independence number of circulant graphs
    Laouar, Abdelamin
    Bouchemakh, Isma
    Sopena, Eric
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [42] Number of vertices of degree three in spanning 3-trees in square graphs
    Aye, Win Min
    Tian, Tao
    Xiong, Liming
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 357 : 258 - 262
  • [43] The number of spanning trees in a superprism
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS LETTERS, 2024, 13 : 66 - 73
  • [44] Spanning trees in graphs of high minimum degree with a universal vertex I: An asymptotic result
    Reed, Bruce
    Stein, Maya
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 737 - 783
  • [45] On Circulant Graphs with the Maximum Leaf Number Property and Its One-to-Many Communication Scheme
    Muga, Felix P., II
    TRANSACTIONS ON ENGINEERING TECHNOLOGIES, 2015, : 327 - 341
  • [46] Graphs with only caterpillars as spanning trees
    Jamison, RE
    McMorris, FR
    Mulder, HM
    DISCRETE MATHEMATICS, 2003, 272 (01) : 81 - 95
  • [47] Signpost systems and spanning trees of graphs
    Nebesky, Ladislav
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (03) : 885 - 893
  • [48] Spectral radius and spanning trees of graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [49] Signpost systems and spanning trees of graphs
    Ladislav Nebeský
    Czechoslovak Mathematical Journal, 2006, 56 : 885 - 893
  • [50] Connected factors and spanning trees in graphs
    Tokuda, T
    Xu, BG
    Wang, JF
    GRAPHS AND COMBINATORICS, 2003, 19 (02) : 259 - 262