The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic

被引:16
|
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Spanning tree; Circulant graph; Laplacian matrix; Chebyshev polynomial; Mahler measure; JACOBIAN GROUP; COMPLEXITY;
D O I
10.1016/j.disc.2018.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a new method to produce explicit formulas for the number tau(n) of spanning trees in the undirected circulant graphs C-n(s(1), s(2), ... , s(k)) and C-2n(s(1), s(2), ... , s(k), n). Also, we prove that in both cases the number of spanning trees can be represented in the form tau(n) = pna(n)(2), where a(n) is an integer sequence and p is a prescribed natural number depending on the parity of n. Finally, we find an asymptotic formula for tau(n) through the Mahler measure of the associated Laurent polynomial L(z) = 2k - Sigma(k)(j=1)(z(sj) + z(-sj)). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1772 / 1781
页数:10
相关论文
共 50 条
  • [21] The number of spanning trees in a new lexicographic product of graphs
    Liang Dong
    Li Feng
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (11) : 1 - 9
  • [22] The number of spanning trees of plane graphs with reflective symmetry
    Ciucu, M
    Yan, WG
    Zhang, F
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 112 (01) : 105 - 116
  • [23] Expression for the Number of Spanning Trees of Line Graphs of Arbitrary Connected Graphs
    Dong, Fengming
    Yan, Weigen
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 74 - 93
  • [24] Undirected simple connected graphs with minimum number of spanning trees
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3074 - 3082
  • [25] Generating formulas of the number of spanning trees of some special graphs
    S. N. Daoud
    The European Physical Journal Plus, 129
  • [26] The number of spanning trees for Sierpinski graphs and data center networks
    Zhang, Xiaojuan
    Yang, Gang
    He, Changxiang
    Klasing, Ralf
    Mao, Yaping
    INFORMATION AND COMPUTATION, 2024, 300
  • [27] On relation between the Kirchhoff index and number of spanning trees of graphs
    Milovanovi, Igor
    Glogic, Edin
    Matejic, Marjan
    Milovanovic, Emina
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (01) : 1 - 8
  • [28] Generating formulas of the number of spanning trees of some special graphs
    Daoud, S. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (07):
  • [29] Laplacian coefficients, Kirchhoff index and the number of spanning trees of graphs
    Altindag, S. B. Bozkurt
    Milovanovic, I.
    Milovanovic, E.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (04)
  • [30] Enumerating spanning trees of graphs with an involution
    Zhang, Fuji
    Yan, Weigen
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) : 650 - 662