The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic

被引:16
|
作者
Mednykh, A. D. [1 ]
Mednykh, I. A.
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Spanning tree; Circulant graph; Laplacian matrix; Chebyshev polynomial; Mahler measure; JACOBIAN GROUP; COMPLEXITY;
D O I
10.1016/j.disc.2018.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a new method to produce explicit formulas for the number tau(n) of spanning trees in the undirected circulant graphs C-n(s(1), s(2), ... , s(k)) and C-2n(s(1), s(2), ... , s(k), n). Also, we prove that in both cases the number of spanning trees can be represented in the form tau(n) = pna(n)(2), where a(n) is an integer sequence and p is a prescribed natural number depending on the parity of n. Finally, we find an asymptotic formula for tau(n) through the Mahler measure of the associated Laurent polynomial L(z) = 2k - Sigma(k)(j=1)(z(sj) + z(-sj)). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1772 / 1781
页数:10
相关论文
共 50 条
  • [1] On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs
    Mednykh, A. D.
    Mednykh, I. A.
    ALGEBRA COLLOQUIUM, 2020, 27 (01) : 87 - 94
  • [2] The number of spanning trees in odd valent circulant graphs
    Chen, XB
    Lin, QY
    Zhang, FJ
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 69 - 79
  • [3] Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics
    Mednykh, Alexander
    Mednykh, Ilya
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [4] COUNTING SPANNING TREES IN COBORDISM OF TWO CIRCULANT GRAPHS
    Abrosimov, Nikolay Vladimirovich
    Baigonakova, Galya Amanboldynovna
    Mednykh, Ilya Aleksandrovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1145 - 1157
  • [5] The number of rooted forests in circulant graphs
    Grunwald, Lilya A.
    Mednykh, Ilya
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [6] Spanning trees in directed circulant graphs and cycle power graphs
    Justine Louis
    Monatshefte für Mathematik, 2017, 182 : 51 - 63
  • [7] Spanning trees in directed circulant graphs and cycle power graphs
    Louis, Justine
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 51 - 63
  • [8] The number of spanning trees in directed circulant graphs with non-fixed jumps
    Chen, Xiebin
    DISCRETE MATHEMATICS, 2007, 307 (15) : 1873 - 1880
  • [9] On the Number of Spanning Trees of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [10] COUNTING ROOTED SPANNING FORESTS IN COBORDISM OF TWO CIRCULANT GRAPHS
    Abrosimov, N., V
    Baigonakova, G. A.
    Grunwald, L. A.
    Mednykh, I. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 814 - 823