Genome-wide Significance Thresholds for Admixture Mapping Studies

被引:24
|
作者
Grinde, Kelsey E. [1 ]
Brown, Lisa A. [1 ,2 ]
Reiner, Alexander P. [3 ,4 ]
Thornton, Timothy A. [1 ]
Browning, Sharon R. [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Seattle Genet, Bothell, WA 98021 USA
[3] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[4] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
AFRICAN-AMERICANS; POPULATION-STRUCTURE; ASSOCIATION ANALYSIS; P VALUES; ANCESTRY; LINKAGE; LOCUS; MAP; ADJUSTMENT; DIVERSITY;
D O I
10.1016/j.ajhg.2019.01.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Admixture mapping studies have become more common in recent years, due in part to technological advances and growing international efforts to increase the diversity of genetic studies. However, many open questions remain about appropriate implementation of admixture mapping studies, including how best to control for multiple testing, particularly in the presence of population structure. In this study, we develop a theoretical framework to characterize the correlation of local ancestry and admixture mapping test statistics in admixed populations with contributions from any number of ancestral populations and arbitrary population structure. Based on this framework, we develop an analytical approach for obtaining genome-wide significance thresholds for admixture mapping studies. We validate our approach via analysis of simulated traits with real genotype data for 8,064 unrelated African American and 3,425 Hispanic/Latina women from the Women's Health Initiative SNP Health Association Resource (WHI SHARe). In an application to these WHI SHARe data, our approach yields genome-wide significant p value thresholds of 2.1 x 10(-5) and 4.5 x 10(-6) for admixture mapping studies in the African American and Hispanic/Latina cohorts, respectively. Compared to other commonly used multiple testing correction procedures, our method is fast, easy to implement (using our publicly available R package), and controls the family-wise error rate even in structured populations. Importantly, we note that the appropriate admixture mapping significance threshold depends on the number of ancestral populations, generations since admixture, and population structure of the sample; as a result, significance thresholds are not, in general, transferable across studies.
引用
收藏
页码:454 / 465
页数:12
相关论文
共 50 条
  • [31] Genome-wide association analysis and admixture mapping in a Puerto Rican cohort supports an Alzheimer disease risk locus on chromosome 12
    Akgun, Bilcag
    Feliciano-Astacio, Briseida E.
    Hamilton-Nelson, Kara L.
    Scott, Kyle
    Rivero, Joe
    Adams, Larry D.
    Sanchez, Jose J.
    Valladares, Glenies S.
    Tejada, Sergio
    Bussies, Parker L.
    Silva-Vergara, Concepcion
    Rodriguez, Vanessa C.
    Mena, Pedro R.
    Celis, Katrina
    Whitehead, Patrice G.
    Prough, Michael
    Kosanovic, Christina
    Van Booven, Derek J.
    Schmidt, Michael A.
    Acosta, Heriberto
    Griswold, Anthony J.
    Dalgard, Clifton L.
    Mcinerney, Katalina F.
    Beecham, Gary W.
    Cuccaro, Michael L.
    Vance, Jeffery M.
    Pericak-Vance, Margaret A.
    Rajabli, Farid
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [32] Moving Beyond Genome-Wide Association Studies
    Glazer, Nicole L.
    CIRCULATION-CARDIOVASCULAR GENETICS, 2011, 4 (01) : 91 - 93
  • [33] The advent of genome-wide association studies for bacteria
    Chen, Peter E.
    Shapiro, B. Jesse
    CURRENT OPINION IN MICROBIOLOGY, 2015, 25 : 17 - 24
  • [34] Genome-Wide Association Studies of Sleep Disorders
    Raizen, David M.
    Wu, Mark N.
    CHEST, 2011, 139 (02) : 446 - 452
  • [35] GENOME-WIDE ASSOCIATION STUDIES OF CARDIOVASCULAR DISEASE
    Walsh, Roddy
    Jurgens, Sean J.
    Erdmann, Jeanette
    Bezzina, Connie R.
    PHYSIOLOGICAL REVIEWS, 2023, 103 (03) : 2039 - 2055
  • [36] Genome-Wide Association Studies in Nephrology Research
    Koettgen, Anna
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2010, 56 (04) : 743 - 758
  • [37] Statistical methods for genome-wide association studies
    Wang, Maggie Haitian
    Cordell, Heather J.
    Van Steen, Kristel
    SEMINARS IN CANCER BIOLOGY, 2019, 55 : 53 - 60
  • [38] Relatedness Mapping and Tracts of Relatedness for Genome-Wide Data in the Presence of Linkage Disequilibrium
    Albrechtsen, Anders
    Korneliussen, Thorfinn Sand
    Moltke, Ida
    Hansen, Thomas van Overseem
    Nielsen, Finn Cilius
    Nielsen, Rasmus
    GENETIC EPIDEMIOLOGY, 2009, 33 (03) : 266 - 274
  • [39] Genome-Wide Association Mapping of Floral Traits in Cultivated Sunflower (Helianthus annuus)
    Dowell, Jordan A.
    Reynolds, Erin C.
    Pliakas, Tessa P.
    Mandel, Jennifer R.
    Burke, John M.
    Donovan, Lisa A.
    Mason, Chase M.
    JOURNAL OF HEREDITY, 2019, 110 (03) : 275 - 286
  • [40] Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato
    Sharma, Sanjeev Kumar
    MacKenzie, Katrin
    McLean, Karen
    Dale, Finlay
    Daniels, Steve
    Bryan, Glenn J.
    G3-GENES GENOMES GENETICS, 2018, 8 (10): : 3185 - 3202