Density functional theory (DFT)/Becke-Lee-Yang-Parr (B3LYP) and gauge-including atomic orbital (GIAO) calculations were performed on a number of 1,2,4-triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. C-13 and N-15 NMR chemical shifts of 3-substituted 1,2,4-triazole-5-thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6-311++G** basis set. A good agreement between theoretical and experimental C-13 and N-15 NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting N-15 chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state N-15 HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4-triazole thiones. Copyright (c) 2013 John Wiley & Sons, Ltd.