Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures

被引:42
|
作者
Aslani, Farhad [1 ,2 ]
Sun, Junbo [1 ]
Bromley, Daniel [1 ]
Ma, Guowei [1 ]
机构
[1] Univ Western Australia, Sch Civil Environm & Min Engn, Perth, WA 6009, Australia
[2] Edith Cowan Univ, Sch Engn, Joondalup, WA 6027, Australia
基金
澳大利亚研究理事会;
关键词
fiber; heating treatment; high temperatures resistance; lightweight self-compacting concrete; self-compacting concrete; HIGH-STRENGTH CONCRETE; CONSOLIDATING CONCRETE; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; STEEL FIBER; RUBBERIZED CONCRETE; PERFORMANCE; BEHAVIOR; CRUMB; POLYPROPYLENE;
D O I
10.1002/suco.201800231
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Self-compacting concrete (SCC) has developed rapidly in modern concrete structures to accommodate the need of high deformability and considerable resistance to segregation. The lightweight aggregate called scoria is also utilized to manufacture lightweight self-compacting concrete (LWSCC) to improve the strength-to-weight ratio with considerable cost beneficial. Meanwhile, the LWSCC employs fibers (polypropylene [PP] and steel) equipping different replacement ratios of traditional aggregates, the SCC will be invented to reveal balanced fresh property, spalling behavior, mechanical performance especially at elevated temperatures. In this study, eight LWSCC mix designs were explored with varying fiber ratios by volume of PP fiber (0.1, 0.15, 0.20, and 0.25%) and steel fiber (0.25, 0.5, 0.75, and 1.0%). The effects of different fiber types and ratios are tested with fresh properties (slump flow and J-ring), hardened mechanical performance (compressive and tensile strength at 20 degrees C) and high temperature resistance (compressive and tensile strength, mass loss and spalling) after 28-day curing at 100, 300, 600, and 900 degrees C. The 0.25% optimum fiber ratio for PP fiber mix and 0.75% for steel fiber mix are determined with balanced fresh properties as well as high-temperature resistance for the hardened properties.
引用
收藏
页码:1022 / 1035
页数:14
相关论文
共 50 条
  • [31] Development of machine learning methods to predict the compressive strength of fiber-reinforced self-compacting concrete and sensitivity analysis
    Mai, Hai-Van Thi
    Nguyen, May Huu
    Ly, Hai-Bang
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 367
  • [32] Rheological Properties and Strength of Polypropylene Fiber-Reinforced Self-compacting Lightweight Concrete Produced with Ground Limestone
    Altalabani, Danar
    Linsel, Stefan
    Bzeni, Dillshad K. H.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (05) : 4171 - 4185
  • [33] Mechanical properties of fiber reinforced self-compacting concrete
    Cai, Jun
    Jiang, Hongdao
    Zhu, Yeran
    Wang, Dong
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (07): : 1013 - 1016
  • [34] Mechanical Properties of Fiber Reinforced Self-Compacting Concrete
    Long, Wu-Jian
    Lin, Han-Xin
    Chen, Zhen-Rong
    Zhang, Kai-Long
    Wang, Wei-Lun
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 797 - 801
  • [35] Structural performance of corroded reinforced concrete beams made with fiber-reinforced self-compacting concrete
    Kumar, K. Rajesh
    Shyamala, G.
    Adesina, A.
    STRUCTURES, 2021, 32 : 1145 - 1155
  • [36] Residual mechanical characteristics and spalling resistance of fiber reinforced self-compacting concretes exposed to elevated temperatures
    Sideris, K. K.
    Manita, P.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 41 : 296 - 302
  • [37] Size effect on strength of Fiber-Reinforced Self-Compacting Concrete (SCC) after exposure to high temperatures
    Gulsan, M. Eren
    Abdulhaleem, Khamees N.
    Kurtoglu, Ahmet E.
    Cevik, Abdulkadir
    COMPUTERS AND CONCRETE, 2018, 21 (06) : 681 - 695
  • [38] Underwater abrasion of steel fiber-reinforced self-compacting concrete
    Abid, Sallal R.
    Hilo, Ali N.
    Ayoob, Nadheer S.
    Daek, Yasir H.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2019, 11
  • [39] Frost resistance of fiber-reinforced self-compacting recycled concrete
    Zheng, Chuanlei
    Li, Shuxiang
    Hou, Yufei
    Jin, Baohong
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 711 - 725
  • [40] Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures
    Rios, Jose D.
    Cifuentes, Hector
    Leiva, Carlos
    Garcia, Celia
    Alba, Maria D.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (11)