Free Catalyst Synthesis of GaN Nanostructures on Si- Substrate via CVD

被引:0
作者
Abdullah, Qahtan Nofan [1 ]
Yam, Fong Kwong [1 ]
Hassan, Zainuriah [1 ]
Bououdina, Mohamed [2 ,3 ]
机构
[1] Univ Sains Malaysia, Sch Phys, Nanooptoelect Res & Technol Lab, Usm 11800, Penang, Malaysia
[2] Univ Bahrain, Nanotechnol Ctr, Zallaq, Bahrain
[3] Coll Sci, Dept Phys, Zallaq, Bahrain
来源
ISESCO CONFERENCE ON NANOMATERIALS AND APPLICATIONS 2012 | 2013年 / 756卷
关键词
GaN; PL; nanostructures; CVD; GALLIUM NITRIDE; FIELD-EMISSION; NANORODS; NANOWIRES; PHOTOLUMINESCENCE;
D O I
10.4028/www.scientific.net/MSF.756.59
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this article gallium nitride (GaN) nanostructures have been grown through chemical vapor deposition (CVD) on Silicon substrate, no metal catalyst was used. A high purity of gallium nitride powder was evaporated at 1150 degrees C for 3 hour and then annealed at temperature 1000 degrees C under flow of ammonia (NH3) gas. XRD shows the diffraction peaks located at 2 theta = 32.4, 34.4, 36.8, 48.1, 57.8, 63.5, 68.3, 69.2 degrees corresponding to the (100), (002), (101), (102), (110), (103), (200) and (112) diffraction planes of the product. These results revealed that the diffraction peaks can be attributed to the hexagonal GaN phase with lattice constant of a = 3.189 angstrom and c = 5.200 angstrom. Raman scattering spectrum shows four phonons mode correspond to GaN nanostructure are detected at 560, 570, 720 and 740 cm(-1) corresponding Ei(TO), E-2(high), A(1)(LO) and E-1(LO) respectively. Photoluminescence (PL) of the GaN nanostructure exhibited two emission peaks, a weak and broad ultra violet (UV) light emission peak at 390 nm and a strong yellow light (YL) emission peak at 550 nm.
引用
收藏
页码:59 / +
页数:3
相关论文
共 21 条
[1]   Gallium Nitride Nanowire Based Nanogenerators and Light-Emitting Diodes [J].
Chen, Chih-Yen ;
Zhu, Guang ;
Hu, Youfan ;
Yu, Jeng-Wei ;
Song, Jinghui ;
Cheng, Kai-Yuan ;
Peng, Lung-Han ;
Chou, Li-Jen ;
Wang, Zhong Lin .
ACS NANO, 2012, 6 (06) :5687-5692
[2]   Structure and luminescent properties of GaN nanorods grown by magnetron sputtering and ammoniating technique [J].
Chen, Jinhua ;
Xue, Chengshan ;
Zhuang, Huizhao ;
Li, Hong ;
Qin, Lixia ;
Yang, Zhaozhu .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 208 (1-3) :255-258
[3]  
Cho K.K., 2010, PHYS SCR T, V139
[4]  
Feng Z.C., 2008, 3 NITRIDE DEVICES NA
[5]   Synthesis and characterization of nanocrystalline gallium nitride by nitridation of Ga-EDTA complex [J].
Ganesh, V. ;
Suresh, S. ;
Balaji, M. ;
Baskar, K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 498 (01) :52-56
[6]   Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J].
Han, WQ ;
Fan, SS ;
Li, QQ ;
Hu, YD .
SCIENCE, 1997, 277 (5330) :1287-1289
[7]   Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere [J].
Han, WQ ;
Redlich, P ;
Ernst, F ;
Rühle, M .
APPLIED PHYSICS LETTERS, 2000, 76 (05) :652-654
[8]  
He XL, 2009, NANO RES, V2, P321, DOI [10.1007/S12274-009-9029-4, 10.1007/s12274-009-9029-4]
[9]   Synthesis of beta gallium oxide nano-ribbons from gallium arsenide by plasma immersion ion implantation and rapid thermal annealing [J].
Ho, HP ;
Lo, KC ;
Fu, KY ;
Chu, PK ;
Li, KF ;
Cheah, KW .
CHEMICAL PHYSICS LETTERS, 2003, 382 (5-6) :573-577
[10]   Synthesis of GaN nanowires and nanorods via self-growth mode control [J].
Kang, S. M. ;
Shin, T. I. ;
Dinh, Duc V. ;
Yang, J. H. ;
Kim, S. -W. ;
Yoon, D. H. .
MICROELECTRONICS JOURNAL, 2009, 40 (02) :373-376