Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene

被引:40
作者
Alexander-Webber, J. A. [1 ]
Baker, A. M. R. [1 ]
Janssen, T. J. B. M. [2 ]
Tzalenchuk, A. [2 ,3 ]
Lara-Avila, S. [4 ]
Kubatkin, S. [4 ]
Yakimova, R. [5 ]
Piot, B. A. [6 ]
Maude, D. K. [6 ]
Nicholas, R. J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
[4] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[5] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden
[6] LNCMI CNRS UJF INSA UPS, F-38042 Grenoble 9, France
基金
英国工程与自然科学研究理事会;
关键词
CYCLOTRON PHONON EMISSION; ENERGY LOSS RATES; RESISTANCE STANDARD; HETEROJUNCTIONS;
D O I
10.1103/PhysRevLett.111.096601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (I-c) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (rho(xx) = 0) shows a [1 - (T/T-c)(2)] dependence and persists up to T-c > 45 K at 29 T. With magnetic field Ic was found to increase alpha B-3/2 and T-c alpha B-2. As the Fermi energy approaches the Dirac point, the nu = 2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.
引用
收藏
页数:5
相关论文
共 31 条
[21]   Behavior of the contacts of quantum Hall effect devices at high currents [J].
Meziani, YM ;
Chaubet, C ;
Bonifacie, S ;
Raymond, A ;
Poirier, W ;
Piquemal, F .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :404-410
[22]   Room-temperature quantum hall effect in graphene [J].
Novoselov, K. S. ;
Jiang, Z. ;
Zhang, Y. ;
Morozov, S. V. ;
Stormer, H. L. ;
Zeitler, U. ;
Maan, J. C. ;
Boebinger, G. S. ;
Kim, P. ;
Geim, A. K. .
SCIENCE, 2007, 315 (5817) :1379-1379
[23]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[24]   Magnetoabsorption in InSb quantum-well heterostructures [J].
Orr, J. M. S. ;
Chuang, K. -C. ;
Nicholas, R. J. ;
Buckle, L. ;
Emeny, M. T. ;
Buckle, P. D. .
PHYSICAL REVIEW B, 2009, 79 (23)
[25]   Resistance metrology based on the quantum Hall effect [J].
Poirier, W. ;
Schopfer, F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 172 :207-245
[26]   Phase diagram for the breakdown of the quantum Hall effect [J].
Rigal, LB ;
Maude, DK ;
Potemski, M ;
Portal, JC ;
Eaves, L ;
Wasilewski, ZR ;
Hill, G ;
Pate, MA .
PHYSICAL REVIEW LETTERS, 1999, 82 (06) :1249-1252
[27]   Shubnikov-de Haas oscillations of a single layer graphene under dc current bias [J].
Tan, Zhenbing ;
Tan, Changling ;
Ma, Li ;
Liu, G. T. ;
Lu, L. ;
Yang, C. L. .
PHYSICAL REVIEW B, 2011, 84 (11)
[28]   Temperature dependence of collapse of quantized Hall resistance [J].
Tanaka, H ;
Kawashima, H ;
Iizuka, H ;
Fukuda, H ;
Kawajit, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (01)
[29]  
Tzalenchuk A, 2010, NAT NANOTECHNOL, V5, P186, DOI [10.1038/nnano.2009.474, 10.1038/NNANO.2009.474]
[30]  
VONKLITZING K, 1980, PHYS REV LETT, V45, P494, DOI 10.1103/PhysRevLett.45.494