Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene

被引:40
作者
Alexander-Webber, J. A. [1 ]
Baker, A. M. R. [1 ]
Janssen, T. J. B. M. [2 ]
Tzalenchuk, A. [2 ,3 ]
Lara-Avila, S. [4 ]
Kubatkin, S. [4 ]
Yakimova, R. [5 ]
Piot, B. A. [6 ]
Maude, D. K. [6 ]
Nicholas, R. J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
[4] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[5] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden
[6] LNCMI CNRS UJF INSA UPS, F-38042 Grenoble 9, France
基金
英国工程与自然科学研究理事会;
关键词
CYCLOTRON PHONON EMISSION; ENERGY LOSS RATES; RESISTANCE STANDARD; HETEROJUNCTIONS;
D O I
10.1103/PhysRevLett.111.096601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (I-c) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (rho(xx) = 0) shows a [1 - (T/T-c)(2)] dependence and persists up to T-c > 45 K at 29 T. With magnetic field Ic was found to increase alpha B-3/2 and T-c alpha B-2. As the Fermi energy approaches the Dirac point, the nu = 2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.
引用
收藏
页数:5
相关论文
共 31 条
[1]   High-current breakdown of the quantum Hall effect and electron heating in InSb/AlInSb [J].
Alexander-Webber, J. A. ;
Baker, A. M. R. ;
Buckle, P. D. ;
Ashley, T. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 86 (04)
[2]   Magneto-transport of graphene and quantum phase transitions in the quantum Hall regime [J].
Amado, Mario ;
Diez, Enrique ;
Rossella, Francesco ;
Bellani, Vittorio ;
Lopez-Romero, David ;
Maude, Duncan K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (30)
[3]   Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
McMullan, S. D. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Lin, C. -T. ;
Li, L. -J. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2013, 87 (04)
[4]   Energy relaxation for hot Dirac fermions in graphene and breakdown of the quantum Hall effect [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 85 (11)
[5]   Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene [J].
Bennaceur, K. ;
Jacques, P. ;
Portier, F. ;
Roche, P. ;
Glattli, D. C. .
PHYSICAL REVIEW B, 2012, 86 (08)
[6]   Supercollision cooling in undoped graphene [J].
Betz, A. C. ;
Jhang, S. H. ;
Pallecchi, E. ;
Ferreira, R. ;
Feve, G. ;
Berroir, J-M. ;
Placais, B. .
NATURE PHYSICS, 2013, 9 (02) :109-112
[7]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[8]   TEMPERATURE-DEPENDENCE OF THE QUANTUM HALL RESISTANCE [J].
CAGE, ME ;
FIELD, BF ;
DZIUBA, RF ;
GIRVIN, SM ;
GOSSARD, AC ;
TSUI, DC .
PHYSICAL REVIEW B, 1984, 30 (04) :2286-2288
[9]   Quantum-hall activation gaps in graphene [J].
Giesbers, A. J. M. ;
Zeitler, U. ;
Katsnelson, M. I. ;
Ponomarenko, L. A. ;
Mohiuddin, T. M. ;
Maan, J. C. .
PHYSICAL REVIEW LETTERS, 2007, 99 (20)
[10]   Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements [J].
Guignard, J. ;
Leprat, D. ;
Glattli, D. C. ;
Schopfer, F. ;
Poirier, W. .
PHYSICAL REVIEW B, 2012, 85 (16)