SPARSE PRINCIPAL COMPONENT ANALYSIS AND ITERATIVE THRESHOLDING

被引:192
作者
Ma, Zongming [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; high-dimensional statistics; principal component analysis; principal subspace; sparsity; spiked covariance model; thresholding; CONSISTENCY; ASYMPTOTICS;
D O I
10.1214/13-AOS1097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) is a classical dimension reduction method which projects data onto the principal subspace spanned by the leading eigenvectors of the covariance matrix. However, it behaves poorly when the number of features p is comparable to, or even much larger than, the sample size n. In this paper, we propose a new iterative thresholding approach for estimating principal subspaces in the setting where the leading eigenvectors are sparse. Under a spiked covariance model, we find that the new approach recovers the principal subspace and leading eigenvectors consistently, and even optimally, in a range of high-dimensional sparse settings. Simulated examples also demonstrate its competitive performance.
引用
收藏
页码:772 / 801
页数:30
相关论文
共 50 条
[31]   SPARSE PRINCIPAL COMPONENT ANALYSIS VIA VARIABLE PROJECTION [J].
Erichson, N. Benjamin ;
Zheng, Peng ;
Manohar, Krithika ;
Brunton, Steven L. ;
Kutz, J. Nathan ;
Aravkin, Aleksandr Y. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (02) :977-1002
[32]   A sparse principal component analysis of Class III malocclusions [J].
Kang, Tae-Joo ;
Eo, Soo-Heang ;
Cho, HyungJun ;
Donatelli, Richard E. ;
Lee, Shin-Jae .
ANGLE ORTHODONTIST, 2019, 89 (05) :768-774
[33]   Sparse principal component regression with adaptive loading [J].
Kawano, Shuichi ;
Fujisawa, Hironori ;
Takada, Toyoyuki ;
Shiroishi, Toshihiko .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 89 :192-203
[34]   Incorporating biological information in sparse principal component analysis with application to genomic data [J].
Ziyi Li ;
Sandra E. Safo ;
Qi Long .
BMC Bioinformatics, 18
[35]   Sparse principal component analysis via regularized low rank matrix approximation [J].
Shen, Haipeng ;
Huang, Jianhua Z. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (06) :1015-1034
[36]   Incorporating biological information in sparse principal component analysis with application to genomic data [J].
Li, Ziyi ;
Safo, Sandra E. ;
Long, Qi .
BMC BIOINFORMATICS, 2017, 18
[37]   Sparse principal component analysis for high-dimensional stationary time series [J].
Fujimori, Kou ;
Goto, Yuichi ;
Liu, Yan ;
Taniguchi, Masanobu .
SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) :1953-1983
[38]   OPTIMAL SPARSE L1-NORM PRINCIPAL-COMPONENT ANALYSIS [J].
Chamadia, Shubham ;
Pados, Dimitris A. .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :2686-2690
[39]   A plug-in approach to sparse and robust principal component analysis [J].
Luca Greco ;
Alessio Farcomeni .
TEST, 2016, 25 :449-481
[40]   Robust sparse principal component analysis: situation of full sparseness [J].
Alkan, B. Baris ;
Unaldi, I .
JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) :5-20