SPARSE PRINCIPAL COMPONENT ANALYSIS AND ITERATIVE THRESHOLDING

被引:183
作者
Ma, Zongming [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; high-dimensional statistics; principal component analysis; principal subspace; sparsity; spiked covariance model; thresholding; CONSISTENCY; ASYMPTOTICS;
D O I
10.1214/13-AOS1097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) is a classical dimension reduction method which projects data onto the principal subspace spanned by the leading eigenvectors of the covariance matrix. However, it behaves poorly when the number of features p is comparable to, or even much larger than, the sample size n. In this paper, we propose a new iterative thresholding approach for estimating principal subspaces in the setting where the leading eigenvectors are sparse. Under a spiked covariance model, we find that the new approach recovers the principal subspace and leading eigenvectors consistently, and even optimally, in a range of high-dimensional sparse settings. Simulated examples also demonstrate its competitive performance.
引用
收藏
页码:772 / 801
页数:30
相关论文
共 50 条
  • [1] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [2] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [3] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697
  • [4] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [5] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [6] Sparse exponential family Principal Component Analysis
    Lu, Meng
    Huang, Jianhua Z.
    Qian, Xiaoning
    PATTERN RECOGNITION, 2016, 60 : 681 - 691
  • [7] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [8] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [9] Integrative sparse principal component analysis
    Fang, Kuangnan
    Fan, Xinyan
    Zhang, Qingzhao
    Ma, Shuangge
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 1 - 16
  • [10] Sparse and integrative principal component analysis for multiview data
    Xiao, Lin
    Xiao, Luo
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3774 - 3824