Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations

被引:15
作者
He, Haibin [1 ]
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; Weak solutions; Chemotaxis; Navier-Stokes; Zygmund spaces; KELLER-SEGEL SYSTEM; NONLINEAR DIFFUSION; FLUID MODEL; LOGISTIC SOURCE; WELL-POSEDNESS; BLOW-UP; BOUNDEDNESS;
D O I
10.1016/j.nonrwa.2016.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the three dimensional chemotaxis-Navier-Stokes equations. By exploring the new a priori estimates, we prove the global existence of weak solutions for the 3D chemotaxis-Navier Stokes equations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:336 / 349
页数:14
相关论文
共 29 条
[21]  
Winkler M., 2015, ANN I H POINCARE ANA
[22]   Stabilization in a two-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (02) :455-487
[23]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767
[24]   Global Large-Data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :319-351
[25]   Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (08) :1516-1537
[26]   Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model [J].
Winkler, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (12) :2889-2905
[27]   Does a 'volume-filling effect' always prevent chemotactic collapse? [J].
Winkler, Michael .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (01) :12-24
[28]   GLOBAL WELL-POSEDNESS FOR THE TWO-DIMENSIONAL INCOMPRESSIBLE CHEMOTAXIS-NAVIER-STOKES EQUATIONS [J].
Zhang, Qian ;
Zheng, Xiaoxin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :3078-3105
[29]   Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces [J].
Zhang, Qian .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :89-100