Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@C nanorods as high rate anodes for lithium ion batteries

被引:78
作者
Ma, Quanning [1 ]
Song, He [1 ]
Zhuang, Qianyu [1 ]
Liu, Jing [1 ]
Zhang, Zhonghua [1 ]
Mao, Changming [1 ]
Peng, Hongrui [1 ]
Li, Guicun [1 ]
Chen, Kezheng [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron-nitrogen-carbon species; Metal-organic-framework; Rod-like nanostructures; Iron monosulfides; Lithium ion batteries; ENERGY DENSITY CATHODE; FES-AT-C; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; STORAGE; ELECTRODE; CAPACITY; PYRITE; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1016/j.cej.2018.01.087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Iron mono-sulfide anodes suffer from severe irreversible capacity loss due to their poor electronic conductivity and the formation of lithium polysulfide intermediates during cycles. Here, rod-like iron-nitrogen-carbon species integrated Fe1-xS@C composites (r-Fe-N-Fe1-xS@C) are successfully prepared via a one-step simultaneous sulfidation and nitridation of MIL-88A-Fe precursors. The low valence iron-nitrogen-carbon species may serve as polysulfide adsorbent and electrocatalysts, boosting the conversion reaction between lithium polysulfides and Fe1-xS. Its porosity with nano-sized architectures not only enhance the Fe1-xS redox kinetics, but also can mitigate volume expansion stresses. As expected, the r-Fe-N-Fe1-xS@C electrodes exhibit superior charge/discharge performances at high current density (800 mAh g(-1) at 5 A g(-1)) and remarkable long-term cycling stability. Delicately-designed low valence metallic polysulfide electrocatalysts may shed some light on the rational design of high performance sulfur-based and metal sulfide-based electrodes for lithium and/or sodium ion batteries.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 57 条
[1]  
[Anonymous], 2017, ADV MAT
[2]  
[Anonymous], 2017, ADV ENERGY MAT
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material [J].
Bai, Jing ;
Li, Xiaogang ;
Liu, Guangzeng ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3012-3020
[5]   Local Structure Evolution and Modes of Charge Storage in Secondary Li-FeS2 Cells [J].
Butala, Megan M. ;
Mayo, Martin ;
Doan-Nguyen, Vicky V. T. ;
Lumley, Margaret A. ;
Gobel, Claudia ;
Wiaderek, Kamila M. ;
Borkiewicz, Olaf J. ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Balasubramanian, Mahalingam ;
Laurita, Geneva ;
Britto, Sylvia ;
Morris, Andrew J. ;
Grey, Clare P. ;
Seshadri, Ram .
CHEMISTRY OF MATERIALS, 2017, 29 (07) :3070-3082
[6]   Interfacial Effects in Iron-Nickel Hydroxide-Platinum Nanoparticles Enhance Catalytic Oxidation [J].
Chen, Guangxu ;
Zhao, Yun ;
Fu, Gang ;
Duchesne, Paul N. ;
Gu, Lin ;
Zheng, Yanping ;
Weng, Xuefei ;
Chen, Mingshu ;
Zhang, Peng ;
Pao, Chih-Wen ;
Lee, Jyh-Fu ;
Zheng, Nanfeng .
SCIENCE, 2014, 344 (6183) :495-499
[7]   Mechanism of Capacity Fade in Sodium Storage and the Strategies of Improvement for FeS2 Anode [J].
Chen, Kongyao ;
Zhang, Wuxing ;
Xue, Lihong ;
Chen, Weilun ;
Xiang, Xinghua ;
Wan, Min ;
Huang, Yunhui .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1536-1541
[8]   100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode [J].
Chen, Suhua ;
Fan, Ling ;
Xu, Lingling ;
Liu, Qian ;
Qin, Yong ;
Lu, Bingan .
ENERGY STORAGE MATERIALS, 2017, 8 :20-27
[9]   Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries [J].
Cho, Jung Sang ;
Park, Jin-Sung ;
Kang, Yun Chan .
NANO RESEARCH, 2017, 10 (03) :897-907
[10]   Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS2 Nanocrystals for Improved Na-Ion Storage Capabilities [J].
Choi, Seung Ho ;
Kang, Yun Chan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) :24694-24702