SPARSE FUSION SYSTEMS

被引:5
作者
Glesser, Adam [1 ]
机构
[1] Calif State Univ Fullerton, Dept Math, Fullerton, CA 92831 USA
关键词
fusion systems; p-nilpotency; groups; sparse; LOCAL FINITE-GROUPS; CHARACTERISTIC SUBGROUP; THEOREMS;
D O I
10.1017/S0013091512000090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define sparse saturated fusion systems and show that, for odd primes, sparse systems are constrained. This simplifies the proof of the Glauberman-Thompson p-Nilpotency Theorem for fusion systems and a related theorem of Stellmacher. We then define a more restrictive class of saturated fusion systems, called extremely sparse systems, that are constrained for all primes.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 22 条
  • [1] LOCAL METHODS IN BLOCK THEORY
    ALPERIN, J
    BROUE, M
    [J]. ANNALS OF MATHEMATICS, 1979, 110 (01) : 143 - 157
  • [2] Extensions of p-local finite groups
    Broto, C.
    Castellana, N.
    Grodal, J.
    Levi, R.
    Oliver, B.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (08) : 3791 - 3858
  • [3] Subgroup families controlling p-local finite groups
    Broto, C
    Castellana, N
    Grodal, J
    Levi, R
    Oliver, B
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 325 - 354
  • [4] The homotopy theory of fusion systems
    Broto, C
    Levi, R
    Oliver, B
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 779 - 856
  • [5] CHARACTERS AND LOCAL-STRUCTURE IN G-ALGEBRAS
    BROUE, M
    [J]. JOURNAL OF ALGEBRA, 1980, 63 (02) : 306 - 317
  • [6] FROBENIUS THEOREM FOR BLOCKS
    BROUE, M
    PUIG, L
    [J]. INVENTIONES MATHEMATICAE, 1980, 56 (02) : 117 - 128
  • [7] Control of fusion and solubility in fusion systems
    Craven, David A.
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (09) : 2429 - 2448
  • [8] Díaz A, 2009, P AM MATH SOC, V137, P495
  • [9] Control of transfer and weak closure in fusion systems
    Diaz, Antonio
    Glesser, Adam
    Mazza, Nadia
    Park, Sejong
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (02) : 382 - 392
  • [10] Gorenstein D., 1980, FINITE GROUP, V2nd