Binary Threshold Sequences Derived from Carmichael Quotients with Even Numbers Modulus

被引:8
作者
Wu, Chenhuang [1 ,2 ]
Chen, Zhixiong [1 ,2 ]
Du, Xiaoni [3 ]
机构
[1] Putian Univ, Dept Math, Putian 351100, Fujian, Peoples R China
[2] Chinese Acad Sci, Inst Software, State Key Lab Informat Secur, Beijing 100049, Peoples R China
[3] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fermat quotients; Carmichael quotients; finite fields; binary threshold sequences; linear complexity; FERMAT QUOTIENTS; PSEUDORANDOM NUMBERS; LINEAR COMPLEXITY; VALUE SET; SUMS;
D O I
10.1587/transfun.E95.A.1197
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
we define a family of 2(e+1)-periodic binary threshold sequences mid a family of p(2)-periodic binary threshold sequences by using Carmichael quotients modulo 2(e) (e > 2) and 2p (p is an odd prime), respectively. These are extensions of the construction derived from Fermat quotients modulo an odd prime in our earlier work. We determine exact values of the linear complexity, which are larger than half of the period. For cryptographic purpose, the linear complexities of the sequences in this letter are of desired values.
引用
收藏
页码:1197 / 1199
页数:3
相关论文
共 16 条
[1]   Fermat quotients for composite moduli [J].
Agoh, T ;
Dilcher, K ;
Skula, L .
JOURNAL OF NUMBER THEORY, 1997, 66 (01) :29-50
[2]   ON THE DISTRIBUTION OF PSEUDORANDOM NUMBERS AND VECTORS DERIVED FROM EULER-FERMAT QUOTIENTS [J].
Chen, Zhixiong ;
Winterhof, Arne .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) :631-641
[3]  
Chen ZX, 2012, CHINA COMMUN, V9, P105
[4]  
Chen ZX, 2010, LECT NOTES COMPUT SC, V6087, P73, DOI 10.1007/978-3-642-13797-6_6
[5]   Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations [J].
Du, Xiaoni ;
Klapper, Andrew ;
Chen, Zhixiong .
INFORMATION PROCESSING LETTERS, 2012, 112 (06) :233-237
[6]   On the p-divisibility of Fermat quotients [J].
Ernvall, R ;
Metsankyla, T .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1353-1365
[7]  
Gomez D., 2011, PERIOD MATH HUNGAR
[8]  
Granville A., 1988, SOME CONJECTURES REL, P177
[9]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[10]  
Niederreiter H., 1983, FINITE FIELDS