Are Stable Instances Easy?

被引:44
作者
Bilu, Yonatan [1 ]
Linial, Nathan [2 ]
机构
[1] Mobileye Vis Technol Ltd, IL-91450 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Inst Comp Sci, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
GRAPH BISECTION; MAXIMUM CUT; ALGORITHMS; MODEL;
D O I
10.1017/S0963548312000193
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the notion of a stable instance for a discrete optimization problem, and argue that in many practical situations only sufficiently stable instances are of interest. The question then arises whether stable instances of NP-hard problems are easier to solve, and in particular, whether there exist algorithms that solve in polynomial time all sufficiently stable instances of some NP-hard problem. The paper focuses on the Max-Cut problem, for which we show that this is indeed the case.
引用
收藏
页码:643 / 660
页数:18
相关论文
共 21 条
[1]  
Ackerman M., 2009, Proceedings of AISTATS-09, JMLR, V5, P1
[2]  
[Anonymous], 2001, P 33 ANN ACM S THEOR
[3]  
Balcan MF, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1068
[4]  
Bilu Y., THESIS
[5]  
Boppana R. B., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P280, DOI 10.1109/SFCS.1987.22
[6]   GRAPH BISECTION ALGORITHMS WITH GOOD AVERAGE CASE BEHAVIOR [J].
BUI, TN ;
CHAUDHURI, S ;
LEIGHTON, FT ;
SIPSER, M .
COMBINATORICA, 1987, 7 (02) :171-191
[7]  
Condon A, 2001, RANDOM STRUCT ALGOR, V18, P116, DOI 10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO
[8]  
2-2
[9]   LAPLACIAN EIGENVALUES AND THE MAXIMUM CUT PROBLEM [J].
DELORME, C ;
POLJAK, S .
MATHEMATICAL PROGRAMMING, 1993, 62 (03) :557-574
[10]  
Dyer M. E., 1986, 27 ANN S FDN COMP SC, P313