COVID-19 diagnosis from chest CT scan images using deep learning

被引:0
|
作者
Alassiri, Raghad [1 ]
Abukhodair, Felwa [2 ]
Kalkatawi, Manal [2 ]
Khashoggi, Khalid [3 ]
Alotaibi, Reem [2 ]
机构
[1] King Abdulaziz & His Compan Fdn Giftedness & Creat, Riyadh, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Jeddah, Saudi Arabia
来源
ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA | 2022年 / 32卷 / 03期
关键词
COVID-19; deep learning models; CT scan; data augmentation; transfer learning;
D O I
10.33436/v32i3y202205
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Coronavirus disease 2019 (COVID-19) has caused nearly 600 million individual infections worldwide and more than 6 million deaths were reported. With recent advancements in deep learning techniques, there have been significant efforts to detect and diagnose COVID-19 from computerized tomography (CT) scan medical images using deep learning. A retrospective study to detect COVID-19 using deep learning algorithms is conducted in this paper. It aims to improve training results of pre-trained models using transfer learning and data augmentation The performance of different models was measured and the difference in performance with and without using data augmentation was computed. Also, a Convolutional Neural Network (CNN) model was proposed and data augmentation was used to achieve high accuracy ratios. Finally, designed a website that uses the trained models where doctors can upload CT scan images and get COVID-19 classification (https://covid-e46e8.web.app/) was designed. The highest results from pre-trained models without using data augmentation were for DenseNet121, which was equal to 81.4%, and the highest accuracy after using the data augmentation was for MobileNet, which was equal to 83.4%. The rate of accuracy improvement percentage after using data augmentation was about 3%. The conclusion was that data augmentation could improve the accuracy of COVID-19 detection models as it increases the number of samples used to train these models.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [41] COVID-19 diagnosis prediction using classical-to-quantum ensemble model with transfer learning for CT scan images
    Li, Wenqian
    Deng, Xing
    Zhao, Haorong
    Shao, Haijian
    Jiang, Yingtao
    IMAGING SCIENCE JOURNAL, 2021, 69 (5-8) : 319 - 333
  • [42] A review of different deep learning methods in processing the CT scan images of the COVID-19 patients' lungs
    Zhang, Haixia
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (03) : 2001 - 2015
  • [43] Challenges of deep learning diagnosis for COVID-19 from chest imaging
    Rawan Alaufi
    Manal Kalkatawi
    Felwa Abukhodair
    Multimedia Tools and Applications, 2024, 83 : 14337 - 14361
  • [44] Deep-learning characterization and quantification of COVID-19 pneumonia lesions from chest CT images
    Bermejo-Pelaez, D.
    Estepar, R. San Jose
    Fernandez-Velilla, M.
    Miras, C. Palacios
    Madueno, G. Gallardo
    Benegas, M.
    Oroz, M. A. Luengo
    Sellares, J.
    Sanchez, M.
    Peces Barba, G.
    Seijo, L. M.
    Ledesma-Carbayo, M. J.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [45] Deep-CoV: An integrated deep learning model to detect COVID-19 using chest X-ray and CT images
    Roy, Sanjib
    Das, Ayan Kumar
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (02) : 369 - 400
  • [46] Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images
    Chen, Xiaocong
    Yao, Lina
    Zhou, Tao
    Dong, Jinming
    Zhang, Yu
    PATTERN RECOGNITION, 2021, 113
  • [47] VGG-FusionNet: A Feature Fusion Framework from CT scan and Chest X-ray Images based Deep Learning for COVID-19 Detection
    Zhou, Yihan
    Liu, Jiali
    Yang, Zekun
    Liu, Tianyi
    Meng, Xinyue
    Zhou, Zhuocheng
    Anaissi, Ali
    Braytee, Ali
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 349 - 357
  • [48] A deep fuzzy model for diagnosis of COVID-19 from CT images
    Song, Liping
    Liu, Xinyu
    Chen, Shuqi
    Liu, Shuai
    Liu, Xiangbin
    Muhammad, Khan
    Bhattacharyya, Siddhartha
    APPLIED SOFT COMPUTING, 2022, 122
  • [49] Challenges of deep learning diagnosis for COVID-19 from chest imaging
    Alaufi, Rawan
    Kalkatawi, Manal
    Abukhodair, Felwa
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14337 - 14361
  • [50] RAPID AUTOMATIC DETECTION OF COVID-19 IN CHEST CT IMAGES USING VGG16 AND TRANSFER LEARNING
    Gomroki, M.
    Shah-Hosseini, R.
    Hasanlou, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/ 4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 48-4, 2023, : 39 - 44