COVID-19 diagnosis from chest CT scan images using deep learning

被引:0
|
作者
Alassiri, Raghad [1 ]
Abukhodair, Felwa [2 ]
Kalkatawi, Manal [2 ]
Khashoggi, Khalid [3 ]
Alotaibi, Reem [2 ]
机构
[1] King Abdulaziz & His Compan Fdn Giftedness & Creat, Riyadh, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Med, Jeddah, Saudi Arabia
来源
ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA | 2022年 / 32卷 / 03期
关键词
COVID-19; deep learning models; CT scan; data augmentation; transfer learning;
D O I
10.33436/v32i3y202205
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Coronavirus disease 2019 (COVID-19) has caused nearly 600 million individual infections worldwide and more than 6 million deaths were reported. With recent advancements in deep learning techniques, there have been significant efforts to detect and diagnose COVID-19 from computerized tomography (CT) scan medical images using deep learning. A retrospective study to detect COVID-19 using deep learning algorithms is conducted in this paper. It aims to improve training results of pre-trained models using transfer learning and data augmentation The performance of different models was measured and the difference in performance with and without using data augmentation was computed. Also, a Convolutional Neural Network (CNN) model was proposed and data augmentation was used to achieve high accuracy ratios. Finally, designed a website that uses the trained models where doctors can upload CT scan images and get COVID-19 classification (https://covid-e46e8.web.app/) was designed. The highest results from pre-trained models without using data augmentation were for DenseNet121, which was equal to 81.4%, and the highest accuracy after using the data augmentation was for MobileNet, which was equal to 83.4%. The rate of accuracy improvement percentage after using data augmentation was about 3%. The conclusion was that data augmentation could improve the accuracy of COVID-19 detection models as it increases the number of samples used to train these models.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [11] Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
    Singh, Vipul Kumar
    Kolekar, Maheshkumar H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (01) : 3 - 30
  • [12] Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
    Vipul Kumar Singh
    Maheshkumar H. Kolekar
    Multimedia Tools and Applications, 2022, 81 : 3 - 30
  • [13] Developing a novel deep learning approach to diagnosis COVID-19 disease using lung CT-scan images
    Savei, Fatemeh
    Ebadati, Omid Mahdi
    Siadat, Seyed Hossein
    Masroor, Milad
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 92 - 97
  • [14] Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning
    Ghassemi, Navid
    Shoeibi, Afshin
    Khodatars, Marjane
    Heras, Jonathan
    Rahimi, Alireza
    Zare, Assef
    Zhang, Yu-Dong
    Pachori, Ram Bilas
    Gorriz, Manuel
    APPLIED SOFT COMPUTING, 2023, 144
  • [15] Online diagnosis of COVID-19 from chest radiography images by using deep learning algorithms
    Cafer Budak
    Vasfiye Mençik
    Osman Varışlı
    Neural Computing and Applications, 2023, 35 : 20717 - 20734
  • [16] Deep Ensemble Learning-Based Models for Diagnosis of COVID-19 from Chest CT Images
    Mouhafid, Mohamed
    Salah, Mokhtar
    Yue, Chi
    Xia, Kewen
    HEALTHCARE, 2022, 10 (01)
  • [17] A Deep Learning Ensemble Approach for Automated COVID-19 Detection from Chest CT Images
    Zazzaro, Gaetano
    Martone, Francesco
    Romano, Gianpaolo
    Pavone, Luigi
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (24)
  • [18] Online diagnosis of COVID-19 from chest radiography images by using deep learning algorithms
    Budak, Cafer
    Mencik, Vasfiye
    Varisli, Osman
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28) : 20717 - 20734
  • [19] Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images
    Ravi, Vinayakumar
    Narasimhan, Harini
    Chakraborty, Chinmay
    Pham, Tuan D.
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1401 - 1415
  • [20] Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images
    Vinayakumar Ravi
    Harini Narasimhan
    Chinmay Chakraborty
    Tuan D. Pham
    Multimedia Systems, 2022, 28 : 1401 - 1415