Automated Pulmonary Function Measurements from Preoperative CT Scans with Deep Learning

被引:2
|
作者
Choi, Young Sang [1 ]
Oh, Jieun [1 ]
Ahn, Seonhui [1 ]
Hwangbo, Yul [1 ]
Choi, Jin-Ho [1 ,2 ]
机构
[1] Natl Canc Ctr, Healthcare AI Team, Goyang Si 10408, Gyeonggi Do, South Korea
[2] Natl Canc Ctr, Ctr Lung Canc, Goyang Si 10408, Gyeonggi Do, South Korea
来源
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22) | 2022年
关键词
pulmonary function; computed tomography; lung cancer; regression; deep learning; LUNG-CANCER; SURGERY; CLASSIFICATION; LSTM;
D O I
10.1109/BHI56158.2022.9926796
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung resections are the most effective treatment option for early stage lung cancer. Clinicians determine whether a patient is operable and the extent a lung can be resected based in part on the patient's pulmonary function parameters. In this study, we investigate the feasibility of generating forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) values from preoperative chest computed tomography (CT) scans. Our study population includes 546 individuals who had lung cancer surgery at an oncology specialty clinic between 2009 and 2015. All CT studies and pulmonary function tests (PFTs) were collected within 90 days before a subject's operation. We measure pulmonary function with convolutional neural network and recurrent neural network models, extracting image embeddings from axial CT slices with a ResNet-50 network and generating FEV1 and FVC measurements using a bidirectional long short-term memory regressor. We show that combining feature vectors extracted from mediastinal and lung Hounsfield unit windows and taking a multi-label regression approach improves performance over training with embeddings from only one window or single-task networks trained to measure only FEV1 or FVC values. Our work generates PFT measurements end-to-end and is trained with only computed tomography scans and pulmonary function labels with no manual slice selection, bounding boxes, or segmentation masks.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning
    Weston, Alexander D.
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Philbrick, Kenneth A.
    Kostandy, Petro
    Sakinis, Tomas
    Sugimoto, Motokazu
    Takahashi, Naoki
    Erickson, Bradley J.
    RADIOLOGY, 2019, 290 (03) : 669 - 679
  • [22] Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans
    Pu, Jiantao
    Leader, Joseph K.
    Sechrist, Jacob
    Beeche, Cameron A.
    Singh, Jatin P.
    Ocak, Iclal K.
    Risbano, Michael G.
    MEDICAL IMAGE ANALYSIS, 2022, 77
  • [23] Deep learning-based COVID-19 detection system using pulmonary CT scans
    Nair, Rajit
    Alhudhaif, Adi
    Koundal, Deepika
    Doewes, Rumi Iqbal
    Sharma, Preeti
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (29) : 2716 - 2727
  • [24] Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent Management Using Convolutional Neural Network
    Xu, Yi-Ming
    Zhang, Teng
    Xu, Hai
    Qi, Liang
    Zhang, Wei
    Zhang, Yu-Dong
    Gao, Da-Shan
    Yuan, Mei
    Yu, Tong-Fu
    CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 2979 - 2992
  • [25] Deep Learning on Knee CT Scans from Osteoarthritis Patients for Joint Space Assessment
    Shen, Zijie
    Laredo, Jean Denis
    Lomenie, Nicolas
    Chappard, Christine
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 348 - 353
  • [26] Automatic quantification of scapular and glenoid morphology from CT scans using deep learning
    Satir, Osman Berk
    Eghbali, Pezhman
    Becce, Fabio
    Goetti, Patrick
    Meylan, Arnaud
    Rothenbuhler, Kilian
    Diot, Robin
    Terrier, Alexandre
    Buchler, Philippe
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 177
  • [27] A deep learning approach for liver cancer detection in CT scans
    Hameed, Usman
    Rehman, Mujeeb Ur
    Rehman, Amjad
    Damasevicius, Robertas
    Sattar, Abdul
    Saba, Tanzila
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 11 (07)
  • [28] Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes
    Nijiati, Mayidili
    Guo, Lin
    Abulizi, Abudoukeyoumujiang
    Fan, Shiyu
    Wubuli, Abulikemu
    Tuersun, Abudouresuli
    Nijiati, Pahatijiang
    Xia, Li
    Hong, Kunlei
    Zou, Xiaoguang
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 169
  • [29] Automatic Clustering of CT Scans of COVID-19 Patients Based on Deep Learning
    Bemportato, Pierluigi
    Casalino, Gabriella
    Castellano, Giovanna
    Vessio, Gennaro
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2021), 2021, 12898 : 231 - 242
  • [30] Deep Feature Learning for Pulmonary Nodule Classification in a Lung CT
    Kim, Bum-Chae
    Sung, Yu Sub
    Suk, Heung-Il
    2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,