Viscosity solution of the Hamilton-Jacobi equation arising from a thin film blistering model

被引:0
作者
Valente, Vanda
Caffarelli, Giorgio Vergara
机构
[1] Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento MeMoMat, I-00161 Rome, Italy
关键词
thin film delamination; viscosity solution;
D O I
10.1007/s00245-006-0854-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with a dynamical nonlinear model describing the self-driven delamination of compressed thin films. Some assumptions on the buckled shape allow us to describe the moving boundary of the film by a single Hamilton-Jacobi equation. We prove the existence and uniqueness of a viscosity solution to the associated evolution problem.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 17 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]   Line energies for gradient vector fields in the plane [J].
Ambrosio, L ;
De Lellis, C ;
Mantegazza, C .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (04) :327-355
[3]   Stability of straight delamination blisters [J].
Audoly, B .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4124-4127
[4]   Mode-dependent toughness and the delamination of compressed thin films [J].
Audoly, B .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (11) :2315-2332
[5]   Rigorous bounds for the Foppl-von Karman theory of isotropically compressed plates [J].
Ben Belgacem, H ;
Conti, S ;
DeSimone, A ;
Müller, S .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) :661-683
[6]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[7]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[8]   A compactness result in the gradient theory of phase transitions [J].
DeSimone, A ;
Müller, S ;
Kohn, RV ;
Otto, F .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :833-844
[9]  
Evans L.C., 1990, REGIONAL C SERIES MA, V74
[10]  
Gioia G, 1997, ADV APPL MECH, V33, P119, DOI 10.1016/S0065-2156(08)70386-7