SLIDING DISKS IN THE PLANE

被引:12
作者
Bereg, Sergey [1 ]
Dumitrescu, Adrian [2 ]
Pach, Janos [3 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[2] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53201 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Motion planning; reconfiguration algorithms; stable disk packings;
D O I
10.1142/S0218195908002684
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given pair of start and target configurations, each consisting of n pairwise disjoint disks in the plane, what is the minimum number of moves that suffice for transforming the start configuration into the target configuration? In one move a disk slides in the plane without intersecting any other disk, so that its center moves along an arbitrary (open) continuous curve. We discuss efficient algorithms for this task and estimate their number of moves under different assumptions on disk radii. For example, with n congruent disks, 3n/2 + O(root n log n) moves always suffice for transforming the start configuration into the target configuration; on the other hand, (1 + 1/15) n - O (root n) moves are sometimes necessary.
引用
收藏
页码:373 / 387
页数:15
相关论文
共 11 条
  • [1] Moving coins
    Abellanas, M
    Bereg, S
    Hurtado, F
    Olaverri, AG
    Rappaport, D
    Tejel, J
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2006, 34 (01): : 35 - 48
  • [2] CUTTING DISJOINT DISKS BY STRAIGHT-LINES
    ALON, N
    KATCHALSKI, M
    PULLEYBLANK, WR
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (03) : 239 - 243
  • [3] [Anonymous], 1964, ANN U SCI BUDAP
  • [4] The lifting model for reconfiguration
    Bereg, S
    Dumitrescu, A
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (04) : 653 - 669
  • [5] BEREG S, 2005, P 21 ANN S COMP GEOM, P55
  • [6] Brass P., 2005, RES PROBLEMS DISCRET, DOI DOI 10.1007/0-387-29929-7
  • [7] de Bruijn N.G., 1954, NIEUW ARCH WISK, V2, P67
  • [8] DEMAINE E, 2002, MORE GAMES NO CHANCE, P405
  • [9] Pushing squares around
    Dumitrescu, A
    Pach, J
    [J]. GRAPHS AND COMBINATORICS, 2006, 22 (01) : 37 - 50
  • [10] Guibas L. J., 1983, ADV COMPUTING RES, V1, P61