Glass Fiber and Nanoclay Reinforced Polypropylene Composites: Morphological, Thermal and Mechanical Properties

被引:0
|
作者
Rahman, Normasmira A. [1 ]
Hassan, Aziz [1 ]
Yahya, R. [1 ]
Lafia-Araga, R. A. [1 ,2 ]
机构
[1] Univ Malaya, Dept Chem, Kuala Lumpur 50603, Malaysia
[2] Fed Univ Technol, Dept Chem, Minna 92001, Niger State, Nigeria
来源
SAINS MALAYSIANA | 2013年 / 42卷 / 04期
关键词
Hybrid composites; mechanical property; nanostructured materials; thermal property; POLYMER NANOCOMPOSITES; EPOXY COMPOSITES; COUPLING AGENT; PERFORMANCE; DISPERSION; BEHAVIOR; MONTMORILLONITE; MATRIX; LENGTH; LONG;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hybrid composites of polypropylene (PP)/nanoclay (NC)/glass fiber (GF) were prepared by extrusion and injection molding. Molded specimens were analyzed by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), tensile and flexural tests. TEM results revealed NC particle intercalation. TGA results showed that the incorporation of clay into the GF composite improves the thermal stability of the material. The initial thermal decomposition temperatures also shifted to higher values. Incorporation of GF into PP lowers the tensile strength of the binary composite, indicating poor fiber-matrix interfacial adhesion. However, introducing NC increased the strength of the ternary composites. Tensile modulus was enhanced with the incorporation of GF and further increased with an introduction of NC. Flexural strength and flexural modulus are both enhanced with an increase in GF and NC loading.
引用
收藏
页码:537 / 546
页数:10
相关论文
共 50 条
  • [41] Mechanical properties of long glass fiber-reinforced polypropylene composites and their influence factors
    He, Bobing
    Liu, Heng
    Leng, Jinhua
    Yang, Bin
    Chen, Xian
    Fu, Jingwei
    Fu, Qiang
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (03) : 222 - 228
  • [42] Electrical and mechanical properties of carbon/glass hybridized long fiber reinforced polypropylene composites
    Dong Woo Lee
    Sungwon Ma
    Kee Yoon Lee
    Macromolecular Research, 2013, 21 : 767 - 774
  • [43] Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites
    Dong W.
    Fangzhi Xuebao/Journal of Textile Research, 2019, 40 (03): : 71 - 75
  • [44] Mechanical and Thermal Properties of Glass Reinforced Composites
    Toplosky, V. J.
    Betts, S. B.
    Goddard, R. E.
    Torres, J. A.
    Nguyen, D. N.
    Han, K.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
  • [45] Crystallization Behavior and Properties of Glass Fiber Reinforced Polypropylene Composites
    Wang, Yuming
    Cheng, Lihong
    Cui, Xiaoqian
    Guo, Weihong
    POLYMERS, 2019, 11 (07)
  • [46] Morphology, dynamic mechanical and mechanical properties of long glass fiber reinforced polypropylene and polyvinyl chloride composites
    You, Bangsheng
    Zhang, Kaizhou
    Guo, Jianbing
    He, Li
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 107 - +
  • [47] Effect of sisal fiber loading on mechanical, morphological and thermal properties of extruded polypropylene composites
    Munde, Yashwant S.
    Ingle, Ravindra B.
    Siva, I
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [48] Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites
    Karsli, Nevin Gamze
    Aytac, Ayse
    MATERIALS & DESIGN, 2011, 32 (07) : 4069 - 4073
  • [49] MECHANICAL AND THERMAL PROPERTIES OF JUTE-GLASS FIBER REINFORCED NANO COMPOSITES
    Surya, D. P.
    Munirah, A. M.
    Alamelu, S. S.
    Lau, J. C. H.
    Wei, J.
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 3, PTS A-C: DESIGN, MATERIALS, AND MANUFACTURING, 2013, : 1357 - 1362
  • [50] Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites
    Wang, Shaoluo
    Zhong, Jiabao
    Gu, Yongqiang
    Li, Guangyao
    Cui, Junjia
    POLYMER COMPOSITES, 2020, 41 (10) : 4181 - 4191