Robust gates for holonomic quantum computation

被引:52
作者
Florio, G
Facchi, P
Fazio, R
Giovannetti, V
Pascazio, S
机构
[1] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy
[2] Ist Nazl Fis Nucl, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[4] CNR, NEST, INFM, I-56126 Pisa, Italy
[5] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[6] SISSA, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Abelian geometric phases are attracting increasing interest because of possible experimental application in quantum computation. We study the effects of the environment (modeled as an ensemble of harmonic oscillators) on a holonomic transformation and write the corresponding master equation. The solution is analytically and numerically investigated and the behavior of the fidelity analyzed: fidelity revivals are observed and an optimal finite operation time is determined at which the gate is most robust against noise.
引用
收藏
页数:11
相关论文
共 38 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[3]  
[Anonymous], 1996, DECOHERENCE APPEARAN
[4]  
Benenti G., 2004, Principles of Quantum Computation and Information: Basic Tools and Special Topics, Vvol 2
[5]   Leading off-diagonal correction to the form factor of large graphs [J].
Berkolaiko, G ;
Schanz, H ;
Whitney, RS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[7]   Effect of noise on geometric logic gates for quantum computation [J].
Blais, A ;
Tremblay, AMS .
PHYSICAL REVIEW A, 2003, 67 (01) :7
[8]  
Bohm A., 2003, TEXT MONOGR
[9]   Geometric phase in open systems [J].
Carollo, A ;
Fuentes-Guridi, I ;
Santos, MF ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (16)
[10]   OPEN QUANTUM SYSTEMS WITH TIME-DEPENDENT HAMILTONIANS AND THEIR LINEAR RESPONSE [J].
DAVIES, EB ;
SPOHN, H .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (05) :511-523