Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery

被引:16
作者
Arenas-Castro, S. [1 ]
Julien, Y. [2 ]
Jimenez-Munoz, J. C. [2 ]
Sobrino, J. A. [2 ]
Fernandez-Haeger, J. [1 ]
Jordano-Barbudo, D. [1 ]
机构
[1] Univ Cordoba, Ecol Area, Dept Bot Ecol & Plant Physiol, Cordoba, Spain
[2] Univ Valencia, Global Change Unit, E-46100 Burjassot, Spain
关键词
HIGH-SPATIAL-RESOLUTION; MULTISPECTRAL IMAGES; SPECIES CLASSIFICATION; ATMOSPHERIC CORRECTION; LANDSAT TM; FUSION; QUALITY; SPECTRA; WAVELET;
D O I
10.1080/01431161.2012.716909
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recent advances in spatial and spectral resolution of satellite imagery as well as in processing techniques are opening new possibilities of fine-scale vegetation analysis with interesting applications in natural resource management. Here we present the main results of a study carried out in Sierra Morena, Cordoba (southern Spain), aimed at assessing the potential of remote-sensing techniques to discriminate and map individual wild pear trees (Pyrus bourgaeana) in Mediterranean open woodland dominated by Quercus ilex. We used high spatial resolution (2.4 m multispectral/0.6 m panchromatic) QuickBird satellite imagery obtained during the summer of 2008. Given the size and features of wild pear tree crowns, we applied an atmospheric correction method, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and six different fusion pan-sharpening' methods (wavelet a trous' weighted transform, colour normalized (CN), GramSchmidt (GS), huesaturationintensity (HSI) colour transformation, multidirectionmultiresolution (MDMR), and principal component (PC)), to determine which procedure provides the best results. Finally, we assessed the potential of supervised classification techniques (maximum likelihood) to discriminate and map individual wild pear trees scattered over the Mediterranean open woodland.
引用
收藏
页码:3376 / 3396
页数:21
相关论文
共 70 条
[1]  
Aldasoro JJ, 1996, BOT J LINN SOC, V121, P143, DOI 10.1111/j.1095-8339.1996.tb00749.x
[2]  
Aldrich J, 1997, STAT SCI, V12, P162
[3]  
Alonso-Reyes R., 2005, P 24 EARSEL S NEW ST, P343
[4]   A Global Quality Measurement of Pan-Sharpened Multispectral Imagery [J].
Alparone, Luciano ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) :313-317
[5]  
Anderson G.L., 1999, Proceedings of the 17th Biennial Workshop Color Aerial Photography and Videography in Resource Assessment, P223
[6]  
[Anonymous], 2000, P 3 C FUS EARTH DAT
[7]  
[Anonymous], 2008, ARCGIS 9 3 PACKAGE
[8]  
[Anonymous], 2009, ENVI FLAASH ATM CORR
[9]  
[Anonymous], 2002, DATA FUSION DEFINITI
[10]  
Cabello J, 2008, ECOSISTEMAS, V17, P1