ON CONVERGENCE OF THE DQDS ALGORITHM FOR SINGULAR VALUE COMPUTATION

被引:8
作者
Aishima, Kensuke [1 ]
Matsuo, Takayasu [1 ]
Murota, Kazuo [1 ]
Sugihara, Masaaki [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1138656, Japan
关键词
singular value; bidiagonal matrix; dqds algorithm; Johnson bound;
D O I
10.1137/060678762
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global convergence, in exact arithmetic, for the differential quotient difference algorithm that is currently implemented in LAPACK for the computation of the singular values of a bidiagonal matrix. Our results cover any shift strategy that preserves positivity. We also show that the asymptotic rate for the Johnson shift is 3/2.
引用
收藏
页码:522 / 537
页数:16
相关论文
共 16 条
[1]  
Anderson E, 1999, LAPACK USERS GUIDE
[2]  
[Anonymous], 1974, APPL COMPUTATIONAL C
[3]   ACCURATE SINGULAR-VALUES OF BIDIAGONAL MATRICES [J].
DEMMEL, J ;
KAHAN, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (05) :873-912
[4]  
DEMMEL J, 1997, APPL NUMERICAL LINER
[5]  
Dhillon I. S., 1997, THESIS U CALIFORNIA
[6]   Orthogonal eigenvectors and relative gaps [J].
Dhillon, IS ;
Parlett, BN .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (03) :858-899
[7]   Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices [J].
Dhillon, IS ;
Parlett, BN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :1-28
[8]   ACCURATE SINGULAR-VALUES AND DIFFERENTIAL QD-ALGORITHMS [J].
FERNANDO, KV ;
PARLETT, BN .
NUMERISCHE MATHEMATIK, 1994, 67 (02) :191-229
[9]   A GERSGORIN-TYPE LOWER BOUND FOR THE SMALLEST SINGULAR VALUE [J].
JOHNSON, CR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 112 :1-7
[10]   An implementation of the dqds algorithm (positive case) [J].
Parlett, BN ;
Marques, OA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 309 (1-3) :217-259