Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts

被引:216
作者
Magistri, Marco [1 ,2 ]
Faghihi, Mohammad Ali [1 ,2 ]
St Laurent, Georges, III [3 ]
Wahlestedt, Claes [1 ,2 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Psychiat & Behav Sci, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Ctr Therapeut Innovat, Miami, FL 33136 USA
[3] St Laurent Inst, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 瑞士国家科学基金会;
关键词
antisense RNA; epigenetics; transcriptome; chromatin; ncRNAs; NATs; HUMAN GENOME; EPIGENETIC REGULATION; HISTONE MODIFICATION; GENE-EXPRESSION; GROUP PROTEINS; BINDING-SITES; X-CHROMOSOME; MECHANISMS; IDENTIFICATION; REVEAL;
D O I
10.1016/j.tig.2012.03.013
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In the decade following the publication of the Human Genome, noncoding RNAs (ncRNAs) have reshaped our understanding of the broad landscape of genome regulation. During this period, natural antisense transcripts (NATs), which are transcribed from the opposite strand of either protein or non-protein coding genes, have vaulted to prominence. Recent findings have shown that NATs can exert their regulatory functions by acting as epigenetic regulators of gene expression and chromatin remodeling. Here, we review recent work on the mechanisms of epigenetic modifications by NATs and their emerging role as master regulators of chromatin states. Unlike other long ncRNAs, antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci. Understanding the broad range of effects of NATs will shed light on the complex mechanisms that regulate chromatin remodeling and gene expression in development and disease.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 83 条
[41]   Chromatin modifications and their function [J].
Kouzarides, Tony .
CELL, 2007, 128 (04) :693-705
[42]   Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms [J].
Lapidot, Michal ;
Pilpel, Yitzhak .
EMBO REPORTS, 2006, 7 (12) :1216-1222
[43]   Noncoding RNAs: couplers of analog and digital information in nervous system function? [J].
Laurent, Georges St., III ;
Wahlestedt, Claes .
TRENDS IN NEUROSCIENCES, 2007, 30 (12) :612-621
[44]   Tsix, a gene antisense to Xist at the X-inactivation centre [J].
Lee, JT ;
Davidow, LS ;
Warshawsky, D .
NATURE GENETICS, 1999, 21 (04) :400-404
[45]   Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component [J].
Maison, C ;
Bailly, D ;
Peters, AHFM ;
Quivy, JP ;
Roche, D ;
Taddei, A ;
Lachner, M ;
Jenuwein, T ;
Almouzni, G .
NATURE GENETICS, 2002, 30 (03) :329-334
[46]   Small RNAs as Guardians of the Genome [J].
Malone, Colin D. ;
Hannon, Gregory J. .
CELL, 2009, 136 (04) :656-668
[47]   Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript [J].
Martianov, Igor ;
Ramadass, Aroul ;
Barros, Ana Serra ;
Chow, Natalie ;
Akoulitchev, Alexandre .
NATURE, 2007, 445 (7128) :666-670
[48]  
Martin Jean-Jacques, 2012, Handb Clin Neurol, V103, P475, DOI 10.1016/B978-0-444-51892-7.00030-9
[49]   The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains [J].
Maurer-Stroh, S ;
Dickens, NJ ;
Hughes-Davies, L ;
Kouzarides, T ;
Eisenhaber, F ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (02) :69-74
[50]   It takes a PHD to read the histone code [J].
Mellor, Jane .
CELL, 2006, 126 (01) :22-24