Adaptive Median Binary Patterns for Texture Classification

被引:8
|
作者
Hafiane, Adel [1 ]
Palaniappan, Kannappan [2 ]
Seetharaman, Guna [3 ]
机构
[1] Univ Orleans, INSA CVL, PRISME, EA 4229, F-18022 Bourges, France
[2] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA
[3] Air Force Res Lab, Informat Directorate, Rome, NY 13441 USA
来源
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2014年
关键词
D O I
10.1109/ICPR.2014.205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the challenging problem of recognition and classification of textured surfaces under illumination variation, geometric transformations and noisy sensor measurements. We propose a new texture operator, Adaptive Median Binary Patterns (AMBP) that extends our previous Median Binary Patterns (MBP) texture feature. The principal idea of AMBP is to hash small local image patches into a binary pattern texton by fusing MBP and Local Binary Patterns (LBP) operators combined with using self-adaptive analysis window sizes to better capture invariant microstructure information while providing robustness to noise. The AMBP scheme is shown to be an effective mechanism for non-parametric learning of spatially varying image texture statistics. The local distribution of rotation invariant and uniform binary pattern subsets extended with more global joint information are used as the descriptors for robust texture classification. The AMBP is shown to outperform recent binary pattern and filtering-based texture analysis methods on two large texture corpora (CUReT and KTH_TIPS2-b) with and without additive noise. The AMBP method is slightly superior to the best techniques in the noiseless case but significantly outperforms other methods in the presence of impulse noise.
引用
收藏
页码:1138 / 1143
页数:6
相关论文
共 50 条
  • [1] Joint Adaptive Median Binary Patterns for texture classification
    Hafiane, Adel
    Palaniappan, Kannappan
    Seetharaman, Guna
    PATTERN RECOGNITION, 2015, 48 (08) : 2609 - 2620
  • [2] Rotationally invariant hashing of median binary patterns for texture classification
    Hafiane, Adel
    Seetharaman, Guna
    Palaniappan, Kannappan
    Zavidovique, Bertrand
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 619 - +
  • [3] Robust Adaptive Median Binary Pattern for Noisy Texture Classification and Retrieval
    Alkhatib, Mohammad
    Hafiane, Adel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5407 - 5418
  • [4] Local Adaptive Binary Patterns Using Diamond Sampling Structure for Texture Classification
    Pan, Zhibin
    Wu, Xiuquan
    Li, Zhengyi
    Zhou, Zhili
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) : 828 - 832
  • [5] Median Robust Extended Local Binary Pattern for Texture Classification
    Liu, Li
    Lao, Songyang
    Fieguth, Paul W.
    Guo, Yulan
    Wang, Xiaogang
    Pietikainen, Matti
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1368 - 1381
  • [6] MEDIAN ROBUST EXTENDED LOCAL BINARY PATTERN FOR TEXTURE CLASSIFICATION
    Liu, Li
    Fieguth, Paul
    Pietikainen, Matti
    Lao, Songyang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2319 - 2323
  • [7] Extended local binary patterns for texture classification
    Liu, Li
    Zhao, Lingjun
    Long, Yunli
    Kuang, Gangyao
    Fieguth, Paul
    IMAGE AND VISION COMPUTING, 2012, 30 (02) : 86 - 99
  • [8] Dominant Local Binary Patterns for Texture Classification
    Liao, S.
    Law, Max W. K.
    Chung, Albert C. S.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (05) : 1107 - 1118
  • [9] Generalized Local Binary Patterns for Texture Classification
    Liu, Li
    Fieguth, Paul
    Kuang, Gangyao
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [10] A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification
    Hegenbart, Sebastian
    Uhl, Andreas
    PATTERN RECOGNITION, 2015, 48 (08) : 2633 - 2644