Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media

被引:254
作者
Zhang, Xian [1 ,2 ]
Liu, Shengwen [1 ]
Zang, Yipeng [1 ,2 ]
Liu, Rongrong [1 ,2 ]
Liu, Guoqiang [1 ,2 ]
Wang, Guozhong [1 ]
Zhang, Yunxia [1 ]
Zhang, Haimin [1 ]
Zhao, Huijun [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Ctr Environm & Energy Nanomat,Key Lab Mat Phys, Ctr Excellence Nanosci,Anhui Key Lab Nanomat & Na, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Griffith Univ, Ctr Clean Environm & Energy, Gold Coast Campus, Nathan, Qld 4222, Australia
关键词
Co/Co9S8 core-shell structure; Oxygen revolution reaction; Hydrogen evolution reaction; Bifunctional electrocatalyst; Full water splitting; OXYGEN REDUCTION REACTION; HYDROGEN EVOLUTION REACTION; HIGHLY EFFICIENT ELECTROCATALYST; NITROGEN-DOPED CARBON; BIFUNCTIONAL ELECTROCATALYST; NANOPARTICLES; CATALYST; OXIDE; NANOSHEETS; HYBRID;
D O I
10.1016/j.nanoen.2016.09.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here we report the synthesis of Co/Co9S8 core-shell structures anchored onto S, N co-doped porous graphene sheets (Co/Co9S8@SNGS) from thiophene-2,5-dicarboxylate (Tdc) and 4,4'-bipyridine (Bpy) dual organic ligands assembled Co-based metal-organic frameworks (Co-MOFs) in situ grown on graphene oxide sheets (Co-MOFs@GO) by a room-temperature solution reaction. S-containing Tdc and N-containing Bpy not only trigger the growth of Co-MOFs nanocrystals with a fixed S/N atomic ratio of 1:2.4 on GO sheets in the presence of Co2+ in H2O/NaOH system, but also provide S, N doping sources in the pyrolysis process of Co-MOFs to form Co/Co9S8 core-shell structure and S, N co-doping in graphene. The results demonstrate that the obtained Co/Co9S8@SNGS at 1000 degrees C (Co/Co9S8@SNGS-1000) by pyrolysis of Co-MOFs@GO exhibits superiorly bifunctional catalytic activities of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 0.1 M KOH electrolyte, affording an overpotential of 290 mV for OER at a current density of 10 mA cm(-2) and 350 mV for HER at a current density of 20 mA cm(-2). The OER activity of Co/Co(9)S8@SNGS-1000 is slightly better than that of commercial RuO2 catalyst, simultaneously, Co/Co(9)Ss@SNGS-1000 also exhibits good HER activity. As electrode material for full water splitting in 0.1 M KOH solution, the Co/Co9S8@SNGS-1000 electrodes exhibit O-2 and H-2 generation efficiencies of 2.48 and 4.87 mu mol min(-1) respectively, at an applied potential of 1.58 V (vs. RHE) under the given time range, affording nearly 100% Faradaic yield during electrocatalytic water splitting to produce O-2 and H-2.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 51 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Cao, Xuecheng ;
Zheng, Xiangjun ;
Tian, Jinghua ;
Jin, Chao ;
Ke, Ke ;
Yang, Ruizhi .
ELECTROCHIMICA ACTA, 2016, 191 :776-783
[3]   Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Chen, Binling ;
Li, Rong ;
Ma, Guiping ;
Gou, Xinglong ;
Zhu, Yanqiu ;
Xia, Yongde .
NANOSCALE, 2015, 7 (48) :20674-20684
[4]  
Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
[5]   Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction [J].
Dou, Shuo ;
Shen, Anli ;
Tao, Li ;
Wang, Shuangyin .
CHEMICAL COMMUNICATIONS, 2014, 50 (73) :10672-10675
[6]   Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis [J].
Faber, Matthew S. ;
Lukowski, Mark A. ;
Ding, Qi ;
Kaiser, Nicholas S. ;
Jin, Song .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (37) :21347-21356
[7]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[8]   Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction [J].
Fan, Zhanxi ;
Luo, Zhimin ;
Huang, Xiao ;
Li, Bing ;
Chen, Ye ;
Wang, Jie ;
Hu, Yanling ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1414-1419
[9]   Carbon-Armored Co9S8 Nanoparticles as All-pH Efficient and Durable H2-Evolving Electrocatalysts [J].
Feng, Liang-Liang ;
Li, Guo-Dong ;
Liu, Yipu ;
Wu, Yuanyuan ;
Chen, Hui ;
Wang, Yun ;
Zou, Yong-Cun ;
Wang, Dejun ;
Zou, Xiaoxin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) :980-988
[10]   Cobalt Sulfide Nanoparticles Grown on Nitrogen and Sulfur Codoped Graphene Oxide: An Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Ganesan, Pandian ;
Prabu, Moni ;
Sanetuntikul, Jakkid ;
Shanmugam, Sangaraju .
ACS CATALYSIS, 2015, 5 (06) :3625-3637