Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells

被引:10
|
作者
Mueller, Thomas C. M. [1 ]
Pieters, Bart E. [1 ]
Kirchartz, Thomas
Carius, Reinhard [1 ]
Rau, Uwe [1 ]
机构
[1] Foschungszentrum Julich, Photovolta IEK5, D-52525 Julich, Germany
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 10-11 | 2012年 / 9卷 / 10-11期
关键词
photoluminescence; electroluminescence; simulation; hydrogenation; microcrystalline Si; solar cells; band tail slope; DRIFT-MOBILITY MEASUREMENTS; PHOTOLUMINESCENCE; RECOMBINATION; LUMINESCENCE; CONDUCTION; SHUNTS; ENERGY;
D O I
10.1002/pssc.201200428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photoluminescence (PL) and electroluminescence (EL) have received much attention as characterization techniques for photovoltaic devices. The methods are applied to study e. g. optical band-gap, defect states, or quasi-Fermi level splitting. Spatially resolved EL imaging is used to derive local junction voltage differences making it a fast inline characterization method for solar modules. However, the interpretation of EL and PL experiments on hydrogenated microcrystalline silicon (mu c-Si:H) solar cells is more complex hampering the direct determination of local voltage differences. In this work we integrated an existing model for PL of mu c-Si:H silicon with a commercial device simulator for thin-film silicon devices. This way we extended the existing model from a spatially zero dimensional model to a one dimensional model which can also model EL. Furthermore the connection with an electrical device simulator enables the consistent modeling of EL, PL, and the electrical properties of the device. We compared experimental and simulation results for EL, PL and dark-, and illuminated-current/voltage characteristics over a wide temperature range (80 - 300 K). The simulations and experiments are in good agreement in the temperature range from 170 K up to room temperature. In experiments we observed several effects which cannot be explained in the previous zero dimensional model. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1963 / 1967
页数:5
相关论文
共 50 条
  • [21] Photo- and electroluminescence for TCNQ-amino adducts
    Kagawa, Y
    Takada, N
    Matsuda, H
    Yase, K
    Halim, M
    Samuel, IW
    Cross, GH
    Bloor, D
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 349 : 499 - 502
  • [22] Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide
    Staninski, Krzysztof
    Piskula, Zbigniew
    Kaczmarek, Malgorzata
    OPTICAL MATERIALS, 2017, 64 : 142 - 146
  • [23] Photo- and electroluminescence in a series of PPV type terpolymers containing fluorene, thiophene and phenylene units
    Nowacki, Bruno
    Grova, Isabel R.
    Domingues, Raquel A.
    Faria, Gregorio C.
    Atvars, Teresa D. Z.
    Akcelrud, Leni
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2012, 237 : 71 - 79
  • [24] Temperature dependence of the photo- and electroluminescence of poly(p-phenylene vinylene) based polymers
    Roerich, Irina
    Schoenbein, Ann-Kathrin
    Mangalore, Deepthi Kamath
    Ribeiro, Anielen Halda
    Kasparek, Christian
    Bauer, Christian
    Craciun, N. Irina
    Blom, Paul W. M.
    Ramanan, Charusheela
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (39) : 10569 - 10579
  • [25] Effect of I/N interface on the performance of superstrate hydrogenated microcrystalline silicon solar cells
    Bai, Lisha
    Liu, Bofei
    Huang, Qian
    Li, Baozhang
    Zhang, Dekun
    Sun, Jian
    Wei, Changchun
    Chen, Xinliang
    Wang, Guangcai
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 140 : 202 - 208
  • [26] Effect of selective doping on photo- and electroluminescence efficiency in Si:Er structures
    Stepikhova, M
    Andreev, B
    Kuznetsov, V
    Krasil'nik, Z
    Soldatkin, A
    Shmagin, V
    Bresler, M
    GETTERING AND DEFECT ENGINEERING IN SEMICONDUCTOR TECHNOLOGY, 2002, 82-84 : 629 - 635
  • [27] Absolute Quantification of Photo-/Electrolurninescence Imaging.for.. Solar Cells: Definition and Application to Organic and Perovskite Devices
    Planes, Emilie
    Spalla, Manon
    Juillard, Sacha
    Perrin, Lara
    Flandin, Lionel
    ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (12): : 2489 - 2501
  • [28] Photo- and electroluminescence of merocyanine dye M-440
    Manzhara, VS
    Fedorovich, RD
    Verbitsky, AB
    Kulinich, AV
    Ishchenko, AA
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2005, 426 : 303 - 312
  • [29] Deposition and Properties of Hydrogenated Microcrystalline Silicon (μc-Si:H) Films for Solar Cells
    Li, Yanlong
    Zhang, Zhonglin
    Gang, Hong
    Qiu, Peng
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 173 - +
  • [30] Intrinsic microcrystalline silicon for solar cells
    Vetterl, O
    Hapke, P
    Kluth, O
    Lambertz, A
    Wieder, S
    Rech, B
    Finger, F
    Wagner, H
    SOLID STATE PHENOMENA, 1999, 67-8 : 101 - 106