Fabrication of amphiphilic quantum dots towards high-colour-quality light-emitting devices

被引:23
作者
Cheng, Rui [1 ,2 ]
Li, Fucheng [1 ,2 ]
Zhang, Jiahui [1 ,2 ]
She, Xingjin [1 ,2 ]
Zhang, Yi [1 ,2 ]
Shao, Kejin [1 ,2 ]
Lin, Yuxuan [1 ,2 ]
Wang, Cai-Feng [1 ,2 ]
Chen, Su [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Nanjing Tech Univ, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
CORE/SHELL NANOCRYSTALS; PHASE-TRANSFER; SEMICONDUCTOR CLUSTERS; SURFACE; DIODES; NANOPARTICLES; SOLIDS; SIZE;
D O I
10.1039/c9tc00113a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To realize the potential of quantum dots (QDs) in various applications, good affinity between QDs and diverse media with different polarities is particularly important. Herein, we develop an interfacial synthesis method to achieve brightly fluorescent amphiphilic CdSe/ZnS QDs modified with beta-cyclodextrin (-CD) to realize diversified functional applications. Thanks to the host-guest assembly between -CD and the surface ligand of QDs under the moderate interfacial conditions, the beforehand prepared lipophilic QDs change into amphiphilic ones; the as-synthesized amphipathic QDs have good dispersibility in water and toluene, along with greatly enhanced photoluminescence (PL) quantum yields (QYs) of 80-82%. We then demonstrate the use of amphiphilic QDs as colour conversion materials to construct a liquid crystal display (LCD) backlight with a wide colour gamut up to 112%. The amphiphilic QDs could also be well incorporated into polymers via microfluidic spinning to fabricate brightly fluorescent fabrics useful for flexible optoelectronic devices. This work presents a facile functional platform that enables the realization of amphiphilic QDs for high-colour-quality light-emitting applications.
引用
收藏
页码:4244 / 4249
页数:6
相关论文
共 39 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[3]   Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies [J].
Badruddoza, A. Z. M. ;
Tay, A. S. H. ;
Tan, P. Y. ;
Hidajat, K. ;
Uddin, M. S. .
JOURNAL OF HAZARDOUS MATERIALS, 2011, 185 (2-3) :1177-1186
[4]   Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient [J].
Bae, Wan Ki ;
Kwak, Jeonghun ;
Park, Ji Won ;
Char, Kookheon ;
Lee, Changhee ;
Lee, Seonghoon .
ADVANCED MATERIALS, 2009, 21 (17) :1690-+
[5]   Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy [J].
Biju, Vasudevanpillai .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (03) :744-764
[7]   The role of surface passivation for efficient and photostable PbS quantum dot solar cells [J].
Cao, Yiming ;
Stavrinadis, Alexandros ;
Lasanta, Tania ;
So, David ;
Konstantatos, Gerasimos .
NATURE ENERGY, 2016, 1
[8]   Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J].
Choi, Moon Kee ;
Yang, Jiwoong ;
Kang, Kwanghun ;
Kim, Dong Chan ;
Choi, Changsoon ;
Park, Chaneui ;
Kim, Seok Joo ;
Chae, Sue In ;
Kim, Tae-Ho ;
Kim, Ji Hoon ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
NATURE COMMUNICATIONS, 2015, 6
[9]   Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers [J].
Cui, Tingting ;
Zhu, Zhijie ;
Cheng, Rui ;
Tong, Yu-long ;
Peng, Gang ;
Wang, Cai-feng ;
Chen, Su .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) :30785-30793
[10]   Reversible Phase Transfer of (CdSe/ZnS) Quantum Dots between Organic and Aqueous Solutions [J].
Dorokhin, Denis ;
Tomczak, Nikodem ;
Han, Mingyong ;
Reinhoudt, David N. ;
Velders, Aldrik H. ;
Vancso, G. Julius .
ACS NANO, 2009, 3 (03) :661-667