Compensated fractional derivatives and stochastic evolution equations

被引:7
作者
Garrido-Atienza, Maria J. [1 ]
Lu, Kening [2 ]
Schmalfuss, Bjoern [3 ]
机构
[1] Univ Seville, Dpto EDAN, E-41080 Seville, Spain
[2] Brigham Young Univ, Provo, UT 84602 USA
[3] Univ Jena, Inst Stochast, D-77043 Jena, Germany
基金
美国国家科学基金会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; ROUGH; CALCULUS;
D O I
10.1016/j.crma.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in developing a pathwise theory for mild solutions of stochastic evolution equations when the noise path is beta-Holder continuous for beta is an element of (1/3.1/2). From the point of view of the Rough Path Theory, stochastic integrals related to the solution of ordinary differential equations contain area-elements from a tensor space. Based on (compensated) fractional derivatives we are able to derive a second mild equation for these area components. We formulate sufficient conditions for the existence and uniqueness of a pathwise mild solution by using the Banach fixed point theorem provided that the coefficients of the system are sufficiently regular. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1037 / 1042
页数:6
相关论文
共 50 条
  • [21] Diffusion equations and different spatial fractional derivatives
    Basanini Duarte, Alexandre Fernandes
    Gatti Pereira, Jessica de Melo
    Lenzi, Marcelo Kaminski
    Goncalves, Giane
    Rossato, Roberto
    Lenzi, Ervin Kaminski
    ACTA SCIENTIARUM-TECHNOLOGY, 2014, 36 (04) : 657 - 662
  • [22] Doubly nonlinear stochastic evolution equations
    Scarpa, Luca
    Stefanelli, Ulisse
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (05) : 991 - 1031
  • [23] Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise
    Fahim, K.
    Hausenblas, E.
    Kovacs, M.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (03): : 1044 - 1088
  • [24] The solution of stochastic evolution equation with the fractional derivative
    Duan, Yubo
    Jiang, Yiming
    Wei, Yawei
    Zhou, Jie
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [25] Stochastic differential equations driven by fractional Brownian motions
    Jien, Yu-Juan
    Ma, Jin
    BERNOULLI, 2009, 15 (03) : 846 - 870
  • [26] Trees and asymptotic expansions for fractional stochastic differential equations
    Neuenkirch, A.
    Nourdin, I.
    Roessler, A.
    Tindel, S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 157 - 174
  • [27] MOMENT BOUNDS FOR A CLASS OF FRACTIONAL STOCHASTIC HEAT EQUATIONS
    Foondun, Mohammud
    Liu, Wei
    Omaba, Mcsylvester
    ANNALS OF PROBABILITY, 2017, 45 (04) : 2131 - 2153
  • [28] Stochastic Volterra equations driven by fractional Brownian motion
    Fan, Xiliang
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 595 - 620
  • [29] On Some Properties of a Class of Fractional Stochastic Heat Equations
    Liu, Wei
    Tian, Kuanhou
    Foondun, Mohammud
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1310 - 1333
  • [30] A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo-Katugampola Fractional Derivatives
    Djaouti, Abdelhamid Mohammed
    Khan, Zareen A.
    Liaqat, Muhammad Imran
    Al-Quran, Ashraf
    MATHEMATICS, 2024, 12 (11)