Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine

被引:143
|
作者
Carrasco, Luis [1 ,2 ,3 ]
O'Neil, Aneurin W. [1 ]
Morton, R. Daniel [1 ]
Rowland, Clare S. [1 ]
机构
[1] Lancaster Environm Ctr, NERC Ctr Ecol & Hydrol, Lib Ave, Lancaster LA1 4AP, England
[2] Univ Tennessee, Natl Inst Math & Biol Synth, 1122 Volunteer Blvd, Knoxville, TN 37996 USA
[3] Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA
关键词
cloud computing; cloud masking; data fusion; gap filling; radar; supervised classifications; REMOTELY-SENSED DATA; TIME-SERIES; CROP CLASSIFICATION; CLOUD; TM; DIFFERENCE; ALGORITHM; FUSION; IMAGES; FOREST;
D O I
10.3390/rs11030288
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land cover mapping of large areas is challenging due to the significant volume of satellite data to acquire and process, as well as the lack of spatial continuity due to cloud cover. Temporal aggregation-the use of metrics (i.e., mean or median) derived from satellite data over a period of time-is an approach that benefits from recent increases in the frequency of free satellite data acquisition and cloud-computing power. This enables the efficient use of multi-temporal data and the exploitation of cloud-gap filling techniques for land cover mapping. Here, we provide the first formal comparison of the accuracy between land cover maps created with temporal aggregation of Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8 (L8) data from one-year and test whether this method matches the accuracy of traditional approaches. Thirty-two datasets were created for Wales by applying automated cloud-masking and temporally aggregating data over different time intervals, using Google Earth Engine. Manually processed S2 data was used for comparison using a traditional two-date composite approach. Supervised classifications were created, and their accuracy was assessed using field-based data. Temporal aggregation only matched the accuracy of the traditional two-date composite approach (77.9%) when an optimal combination of optical and radar data was used (76.5%). Combined datasets (S1, S2 or S1, S2, and L8) outperformed single-sensor datasets, while datasets based on spectral indices obtained the lowest levels of accuracy. The analysis of cloud cover showed that to ensure at least one cloud-free pixel per time interval, a maximum of two intervals per year for temporal aggregation were possible with L8, while three or four intervals could be used for S2. This study demonstrates that temporal aggregation is a promising tool for integrating large amounts of data in an efficient way and that it can compensate for the lower quality of automatic image selection and cloud masking. It also shows that combining data from different sensors can improve classification accuracy. However, this study highlights the need for identifying optimal combinations of satellite data and aggregation parameters in order to match the accuracy of manually selected and processed image composites.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
    Berra, Elias Fernando
    Fontana, Denise Cybis
    Yin, Feng
    Breunig, Fabio Marcelo
    REMOTE SENSING, 2024, 16 (15)
  • [2] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [3] Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China
    Xu, Feng
    Li, Zhaofu
    Zhang, Shuyu
    Huang, Naitao
    Quan, Zongyao
    Zhang, Wenmin
    Liu, Xiaojun
    Jiang, Xiaosan
    Pan, Jianjun
    Prishchepov, Alexander V.
    REMOTE SENSING, 2020, 12 (12)
  • [4] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [5] Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine
    Roteta, Ekhi
    Bastarrika, Aitor
    Franquesa, Magi
    Chuvieco, Emilio
    REMOTE SENSING, 2021, 13 (04) : 1 - 30
  • [6] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [7] Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons
    Borges, Joana
    Higginbottom, Thomas P.
    Symeonakis, Elias
    Jones, Martin
    REMOTE SENSING, 2020, 12 (23) : 1 - 21
  • [8] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [9] Comparison of Landsat 8, Sentinel-2 and spectral indices combinations for Google Earth Engine-based land use mapping in the Johor River Basin, Malaysia
    Ju, Zeng
    Tan, Mou Leong
    Samat, Narimah
    Chang, Chun Kiat
    GEOGRAFIA-MALAYSIAN JOURNAL OF SOCIETY & SPACE, 2021, 17 (03): : 30 - 46
  • [10] Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine
    Ghorbanian, Arsalan
    Zaghian, Soheil
    Asiyabi, Reza Mohammadi
    Amani, Meisam
    Mohammadzadeh, Ali
    Jamali, Sadegh
    REMOTE SENSING, 2021, 13 (13)