On self-embeddings of computable linear orderings

被引:2
|
作者
Downey, RG
Jockusch, C
Miller, JS
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Victoria Univ Wellington, Sch Math & Comp Sci, Wellington, New Zealand
基金
中国国家自然科学基金;
关键词
computable linear orders; Dushnik-Miller; self-embedding;
D O I
10.1016/j.apal.2005.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Dushnik-Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine compulability-theoretical aspects of this classical theorem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 76
页数:25
相关论文
共 50 条
  • [41] On Computable Field Embeddings and Difference Closed Fields
    Harrison-Trainor, Matthew
    Melnikov, Alexander
    Miller, Russell
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06): : 1338 - 1363
  • [42] Automata on linear orderings
    Bruyère, V
    Carton, O
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 236 - 247
  • [43] Automata on linear orderings
    Bruyere, Veronique
    Carton, Olivier
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2007, 73 (01) : 1 - 24
  • [44] ALGEBRAIC LINEAR ORDERINGS
    Bloom, S. L.
    Esik, Z.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (02) : 491 - 515
  • [45] Computable Reducibility for Computable Linear Orders of Type ω
    Askarbekkyzy A.
    Bazhenov N.A.
    Kalmurzayev B.S.
    Journal of Mathematical Sciences, 2022, 267 (4) : 429 - 443
  • [46] Linear extensions of orderings
    Novák, V
    Novotny, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (04) : 853 - 864
  • [47] Low linear orderings
    Frolov, Andrey N.
    JOURNAL OF LOGIC AND COMPUTATION, 2012, 22 (04) : 745 - 754
  • [48] Automata on linear orderings
    Bruyère, V
    Carton, O
    DEVELOPMENTS IN LANGUAGE THEORY, 2003, 2450 : 103 - 115
  • [49] Linear extensions of orderings
    Vítězslav Novák
    Miroslav Novotný
    Czechoslovak Mathematical Journal, 2000, 50 : 853 - 864
  • [50] DEGREES OF ORDERINGS NOT ISOMORPHIC TO RECURSIVE LINEAR-ORDERINGS
    JOCKUSCH, CG
    SOARE, RI
    ANNALS OF PURE AND APPLIED LOGIC, 1991, 52 (1-2) : 39 - 64