On self-embeddings of computable linear orderings

被引:2
|
作者
Downey, RG
Jockusch, C
Miller, JS
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Victoria Univ Wellington, Sch Math & Comp Sci, Wellington, New Zealand
基金
中国国家自然科学基金;
关键词
computable linear orders; Dushnik-Miller; self-embedding;
D O I
10.1016/j.apal.2005.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Dushnik-Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine compulability-theoretical aspects of this classical theorem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 76
页数:25
相关论文
共 50 条
  • [21] Turing Computable Embeddings, Computable Infinitary Equivalence, and Linear Orders
    Bazhenov, Nikolay
    UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 141 - 151
  • [22] Degree spectra of the successor relation of computable linear orderings
    Jennifer Chubb
    Andrey Frolov
    Valentina Harizanov
    Archive for Mathematical Logic, 2009, 48 : 7 - 13
  • [23] Degree spectra of the successor relation of computable linear orderings
    Chubb, Jennifer
    Frolov, Andrey
    Harizanov, Valentina
    ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (01) : 7 - 13
  • [24] ORIENTABLE SELF-EMBEDDINGS OF STEINER TRIPLE SYSTEMS OF ORDER 15
    Bennett, G. K.
    Grannell, M. J.
    Griggs, T. S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (02): : 163 - 172
  • [25] Automorphisms of η-like computable linear orderings and Kierstead's conjecture
    Harris, Charles M.
    Lee, Kyung Il
    Cooper, S. Barry
    MATHEMATICAL LOGIC QUARTERLY, 2016, 62 (06) : 481 - 506
  • [27] SELF-EMBEDDINGS OF MODELS OF ARITHMETIC; FIXED POINTS, SMALL SUBMODELS, AND EXTENDABILITY
    Bahrami, Saeideh
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (03) : 1044 - 1066
  • [28] Self-embeddings of Hamming Steiner triple systems of small order and APN permutations
    Josep Rifà
    Faina I. Solov’eva
    Mercè Villanueva
    Designs, Codes and Cryptography, 2015, 75 : 405 - 427
  • [29] Self-embeddings of Hamming Steiner triple systems of small order and APN permutations
    Rifa, Josep
    Solov'eva, Faina I.
    Villanueva, Merce
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 405 - 427
  • [30] Turing computable embeddings
    Knight, Julia F.
    Miller, Sara
    Boom, M. Vanden
    JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (03) : 901 - 918