TYPICALLY REAL HARMONIC FUNCTIONS

被引:2
|
作者
Dorff, Michael [1 ]
Nowak, Maria [2 ]
Szapiel, Wojciech [3 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84604 USA
[2] UMCS, Inst Matemat, PL-20031 Lublin, Poland
[3] KUL, Inst Matemat & Informat, PL-20708 Lublin, Poland
关键词
Harmonic mappings; typically real; univalence; STARLIKENESS; CONVEXITY; MAPPINGS; RADII;
D O I
10.1216/RMJ-2012-42-2-567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class tau(O)(H) of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.
引用
收藏
页码:567 / 581
页数:15
相关论文
共 50 条
  • [11] Orientation at singularities of harmonic functions
    Arango, Juan
    Arbelaez, Hugo
    Rivera, Jheison
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 737 - 762
  • [12] On harmonic meromorphic spirallike functions
    Ali, Md Firoz
    Pandit, Sushil
    JOURNAL OF ANALYSIS, 2024, : 657 - 672
  • [13] Lipschitz continuity of α-harmonic functions
    Li, Peijin
    Wang, Xiantao
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (01) : 85 - 97
  • [14] Inequalities of harmonic univalent functions with connections of hypergeometric functions
    Sokol, Janusz
    Ibrahim, Rabha W.
    Ahmad, M. Z.
    Al-Janaby, Hiba F.
    OPEN MATHEMATICS, 2015, 13 : 691 - 705
  • [15] On the order of convolution consistence of certain classes of harmonic functions with varying arguments
    Salagean, Grigore Stefan
    Pall-Szabo, Agnes Orsolya
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (02): : 269 - 278
  • [16] On Harmonic Close-To-Convex Functions
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Computational Methods and Function Theory, 2012, 12 : 669 - 685
  • [17] On Harmonic Close-To-Convex Functions
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (02) : 669 - 685
  • [18] HARMONIC MAPPINGS RELATED TO THE CONVEX FUNCTIONS
    Yemisci, Arzu
    Polatoglu, Yasar
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 110 - 116
  • [19] Harmonic functions of general graph Laplacians
    Hua, Bobo
    Keller, Matthias
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) : 343 - 362
  • [20] Sharp Pointwise Estimate of α-Harmonic Functions
    Kalaj, David
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (06)