TYPICALLY REAL HARMONIC FUNCTIONS

被引:2
作者
Dorff, Michael [1 ]
Nowak, Maria [2 ]
Szapiel, Wojciech [3 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84604 USA
[2] UMCS, Inst Matemat, PL-20031 Lublin, Poland
[3] KUL, Inst Matemat & Informat, PL-20708 Lublin, Poland
关键词
Harmonic mappings; typically real; univalence; STARLIKENESS; CONVEXITY; MAPPINGS; RADII;
D O I
10.1216/RMJ-2012-42-2-567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class tau(O)(H) of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.
引用
收藏
页码:567 / 581
页数:15
相关论文
共 18 条
[1]  
Ahlfors L.V., 1960, Riemann Surfaces
[2]  
[Anonymous], P AM MATH SOC
[3]   Harmonic typically real mappings [J].
Bshouty, D ;
Hengartner, W ;
Hossian, O .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 :673-680
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]   The argument principle for harmonic functions [J].
Duren, P ;
Hengartner, W ;
Laugesen, RS .
AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (05) :411-415
[6]  
Duren P., 2004, CAMBRIDGE TRACTS MAT, V156
[7]  
Goluzin G.M., 1950, Matematicheskiy sbornik, V27, P201
[8]  
Goodman A. W., 1983, Univalent Functions
[9]   DOMAIN COVERED BY A TYPICALLY-REAL FUNCTION [J].
GOODMAN, AW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (02) :233-237
[10]   EXTREMAL PROBLEMS FOR TYPICALLY REAL FUNCTIONS [J].
KIRWAN, WE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (04) :942-&