TYPICALLY REAL HARMONIC FUNCTIONS

被引:2
|
作者
Dorff, Michael [1 ]
Nowak, Maria [2 ]
Szapiel, Wojciech [3 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84604 USA
[2] UMCS, Inst Matemat, PL-20031 Lublin, Poland
[3] KUL, Inst Matemat & Informat, PL-20708 Lublin, Poland
关键词
Harmonic mappings; typically real; univalence; STARLIKENESS; CONVEXITY; MAPPINGS; RADII;
D O I
10.1216/RMJ-2012-42-2-567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class tau(O)(H) of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.
引用
收藏
页码:567 / 581
页数:15
相关论文
共 50 条
  • [1] To distortion theorems for typically real functions
    Goluzina E.G.
    Journal of Mathematical Sciences, 2010, 166 (2) : 222 - 224
  • [2] A distortion theorem for the class of typically real functions
    E. G. Goluzina
    Journal of Mathematical Sciences, 2009, 157 (4) : 560 - 567
  • [3] Generalized harmonic Koebe functions
    Ferrada-Salas, Alvaro
    Martin, Maria J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 860 - 873
  • [4] LOGHARMONIC MAPPINGS WITH TYPICALLY REAL ANALYTIC COMPONENTS
    AbdulHadi, Zayid
    Alarifi, Najla M.
    Ali, Rosihan M.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1783 - 1789
  • [5] Some Properties of Certain Multivalent Harmonic Functions
    Oros, Georgia Irina
    Yalcin, Sibel
    Bayram, Hasan
    MATHEMATICS, 2023, 11 (11)
  • [6] Harmonic close-to-convex functions and minimal surfaces
    Ponnusamy, Saminathan
    Rasila, Antti
    Kaliraj, A. Sairam
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (07) : 986 - 1002
  • [7] SCHWARZ LEMMA FOR REAL HARMONIC FUNCTIONS ONTO SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE
    Kalaj, David
    Mateljevic, Miodrag
    Pinelis, Iosif
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (02) : 516 - 531
  • [8] Integral means and arclength inequalities for typically real logharmonic mappings
    Abdulhadi, Z.
    Aydogan, M.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (01) : 27 - 32
  • [9] Harmonic approximations of analytic functions
    Kargar, Rahim
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (10) : 1751 - 1774
  • [10] Orientation at singularities of harmonic functions
    Juan Arango
    Hugo Arbeláez
    Jheison Rivera
    Monatshefte für Mathematik, 2020, 193 : 737 - 762