Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2

被引:51
作者
Seger, Brian [1 ]
Tilley, S. David [2 ]
Pedersen, Thomas [3 ]
Vesborg, Peter C. K. [1 ]
Hansen, Ole [3 ]
Graetzel, Michael [2 ]
Chorkendorff, Ib [1 ]
机构
[1] Dept Phys, DK-2800 Lyngby, Denmark
[2] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland
[3] Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRODES; SURFACE;
D O I
10.1039/c3ta12309j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work demonstrates that tuning the donor density of protective TiO2 layers on a photocathode has dramatic consequences for electronic conduction through TiO2 with implications for the stabilization of oxidation-sensitive catalysts on the surface. Vacuum annealing at 400 degrees C for 1 hour of atomic layer deposited TiO2 increased the donor density from an as-deposited value of 1.3 x 10(19) cm(-3) to 2.2 x 10(20) cm(-3) following the annealing step. Using an Fe(II)/Fe(III) redox couple it was shown that the lower dopant density only allows electron transfer through TiO2 under conditions of weak band bending. However it was shown that increasing the dopant density to 2.2 x 10(20) cm(-3) allows tunneling through the surface region of TiO2 to occur at significant band bending. An important implication of this result is that the less doped material is unsuitable for electron transfer across the TiO2/electrolyte interface if the potential is significantly more anodic than the TiO2 conduction band due to moderate to large band bending. This means that the lesser doped TiO2 can be used to prevent the inadvertent oxidation of sensitive species on the surface (e. g. H-2 evolution catalysts) as long as the redox potential of the material is significantly more anodic than the TiO2 conduction band. Conversely, for situations where an oxidative process on the surface is desired, highly doped TiO2 may be used to enable current flow via tunneling.
引用
收藏
页码:15089 / 15094
页数:6
相关论文
共 19 条
[1]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[2]   ELECTRICAL AND OPTICAL-PROPERTIES OF POROUS NANOCRYSTALLINE TIO2 FILMS [J].
CAO, F ;
OSKAM, G ;
SEARSON, PC ;
STIPKALA, JM ;
HEIMER, TA ;
FARZAD, F ;
MEYER, GJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (31) :11974-11980
[3]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[4]   First-principles study of point defects in rutile TiO2-x [J].
Cho, Eunae ;
Han, Seungwu ;
Ahn, Hyo-Shin ;
Lee, Kwang-Ryeol ;
Kim, Seong Keun ;
Hwang, Cheol Seong .
PHYSICAL REVIEW B, 2006, 73 (19)
[5]   WORK FUNCTION, ELECTRONEGATIVITY, AND ELECTROCHEMICAL BEHAVIOR OF METALS .4. SIMPLE ELECTRON EXCHANGE-REACTIONS FE2+/FE3+ REDOX COUPLE [J].
GALIZZIOLI, D ;
TRASATTI, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1973, 44 (03) :367-388
[6]   Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface:: Molecular and dissociative channels [J].
Henderson, MA ;
Epling, WS ;
Perkins, CL ;
Peden, CHF ;
Diebold, U .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (25) :5328-5337
[7]  
Hou YD, 2011, NAT MATER, V10, P434, DOI [10.1038/nmat3008, 10.1038/NMAT3008]
[8]   PROTECTION OF N-SI PHOTOANODE AGAINST PHOTOCORROSION IN PHOTOELECTROCHEMICAL CELL FOR WATER ELECTROLYSIS [J].
KAINTHLA, RC ;
ZELENAY, B ;
BOCKRIS, JO .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (02) :248-253
[9]  
King D. M., 2008, NANOTECHNOLOGY, V19
[10]  
Kwok K., 1995, Complete Guide to Semiconductor Devices