Einstein relation for biased random walk on Galton-Watson trees

被引:21
作者
Ben Arous, Gerard [1 ]
Hu, Yueyun [2 ]
Olla, Stefano [3 ,4 ]
Zeitouni, Ofer [5 ,6 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Univ Paris 13, LAGA, Dept Math, F-93430 Villetaneuse, France
[3] CEREMADE, F-75775 Paris 16, France
[4] Ecole Ponts, INRIA, Projet MICMAC, F-77455 Marne La Vallee 2, France
[5] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[6] Weizmann Inst Sci, Fac Math, IL-76100 Rehovot, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 03期
基金
以色列科学基金会; 美国国家科学基金会;
关键词
Galton-Watson tree; Einstein relation; Spine representation; PARTICLE;
D O I
10.1214/12-AIHP486
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton-Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.
引用
收藏
页码:698 / 721
页数:24
相关论文
共 20 条
[1]   A survey of Max-type recursive distributional equations [J].
Aldous, DJ ;
Bandyopadhyay, A .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) :1047-1110
[2]   Large deviations for random walks on Galton-Watson trees: averaging and uncertainty [J].
Dembo, A ;
Gantert, N ;
Peres, Y ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (02) :241-288
[3]   Central limit theorem for biased random walk on multi-type Galton-Watson trees [J].
Dembo, Amir ;
Sun, Nike .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 :1-40
[4]   Markovian perturbation, response and fluctuation dissipation theorem [J].
Dembo, Amir ;
Deuschel, Jean-Dominique .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (03) :822-852
[5]   Almost sure convergence for stochastically biased random walks on trees [J].
Faraud, Gabriel ;
Hu, Yueyun ;
Shi, Zhan .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) :621-660
[6]   A central limit theorem for random walk in a random environment on marked Galton-Watson trees [J].
Faraud, Gabriel .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 16 :174-215
[7]  
Feller W., 1968, INTRO PROBABILITY TH
[8]   Einstein relation for reversible diffusions in a random environment [J].
Gantert, Nina ;
Mathieu, Pierre ;
Piatnitski, Andrey .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (02) :187-228
[9]   Einstein relation for random walks in random environments [J].
Komorowski, T ;
Olla, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (08) :1279-1301
[10]   On mobility and Einstein relation for tracers in time-mixing random environments [J].
Komorowski, T ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) :407-435